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Abstract
Since patent data became accessible in the 1980s, we have known that research using this data?while providing
tremendous opportunities?rests on important assumptions about how patents are actually generated by firms. It is well
known that firm-level selection processes shape the likelihood that firms decide to patent or not an invention. What is
unknown is to what extent these processes leave the results of work using patent data at risk of being distorted by
sample selection bias. To understand the magnitude of this bias, we replicate two important prior studies using data
from a novel, proprietary dataset, which contains more than 35,000 invention disclosures made by inventors within a
single firm, only some of which went on to be patented. We find strong indications for the presence of significant
selection bias in patent studies in examining the variance of creative outcome distributions and the impact of past
experience in subsequent inventions. We highlight what the nature of this bias may mean for our current body of
knowledge, and provide suggestions of how this issledcslumdrDI3® @idlPessed in future research.



LIFTING THE VEIL ON PATENTS AND INVENTIONS

ABSTRACT

Since patent dataecame accessible in th88Ds, we have known that research using
this data—while providing tremendous opportunities—rests on important assumptions about
how patents are actually generated by firthis. well known thafirm-level selection
processeshape the likelihood that fisrdecide tgatent or not an invention. What is
unknown is to what extent these pro@sdsavethe results of work using patent data at risk
of being distorted bgampleselection biasTo understand the magnitude of this bias, we
replicate two importantrior studies using data from a novel, proprietary dataset, which
contains more than 35,000 invention disclosures made by inventors avihmgle firm only
some of which went on to be patented. We find strong indicaftiorite presence of
significantselection bias in patent studies in examirthngvariance of creative outcome
distributions and the impact of past experience in subsequent inveftiertighlight what
the nature of this biamay mearfor our current body of knowledge, and provide suggestions

of how this issue should be addressed in future research.
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INTRODUCTION

In a recent pape6Gittelman(2008)stateghat to assess the value of patents as a useful
indicator of innovative outputs of individuals and firmmag needs to gain a better
understanding of the context surroundiimgs’ and inventorstiecisiors to use pants as a
protection mechanism. In her words: “If we do not understand the institutional,
organizational, and strategic context in which patents are created, wesisingithe data,
misinterpreting our results and in many cases attributing causatioytsiance’(p. 21).
Thus, only if we know that patent data is eatty interpreted can weelieve in thevalidity
of studies using patedata. Qucially, patent data, and its use as an indicator of innovative
activity, suffers from an importatimitation: selection bias-an issue that has been
acknowledged for a long time (e.g., Griliches, 1984), but has not yet been commealensi
addressedSimply put, we know that not all inventions are patented, but we use patent data as
a reasonable proxy for invention itself.

Existing work has attempted to quantify and ameliorate these shortcorgings b
drawing on the information contained in patents. For example, prior work has deneohstrat
that there are significant differences between firms operating in corppdect industries,
such as computers, semiconductors, tefetcommunicationsvhere hundreds of patents are
needed to protect the IP contained in a sipybductand those in discrete-product
industries such as pharmaceuticals afmicalswhere a smaller number of patents protect
the IP embedded in a single product (Hall & Ziedonis, 2004gse contributions have
enriched our understanding of ttiéferencesn the propensity to patent and in patenting
practicesbetween industries, which have also been addressed by work using lsaseely-
evidencgArundel & Kabla, 1998Cohen et al., 2000) and by historians of technology, using
databases of innovations (Moser, 2005, 2012).

At the same time, our knwledge of how patent applications are decided upon, and



then generated, inside organizations, remains relatively sparse. Notablelsasgdywork on
individual inventors aside (e.g., Giuri et al., 2007), we know surprisingly little abodtisvha
really going on inside organizatiobsforethe patent application. This is particularly crucial
because this work may challenge some of the data interpretations brought forward b
scholas using patentd-or example, cpatenting has frequently been proposed as a measure
of inter-organization collaboration. Yet, in the PATVAL survey of inventors, siganifi
collaboration with other organizations was reported in about 15% of cases,patentng
only in 3% (Giuri et al., 2007). Thus, it is vital that we improve our understanding ofsvhat i
going on inside organizations to be able to better sense the extent to which our current body
of patent-based research is valid. This richer understanding will help us ensuretauch da
providesa strongfoundation for building theories and for advising practicing managers about
the nature of invention and innovation.

Accordingly, we present empirical evidenanalyzing and quantifying the magnitude
of theselection biashat is characteristic of patent dé&laffe & Trajtenberg, 2002), and that,
if not appropriately accounted for, might significantly bias the results of stbdsed on
patent dat&Gittelman, 208) Specifically,to assess the extent of this bias we exploit a
unique dataset @l invention disabsures madby the employees of a company operating in
a complexproduct industry. This dataset contains information on inventions which did not
pass the novelty step, those that were novel but were not considered useful by tedirm;
those that wereventuallysubmitted to a patent offi@es a patent application

Therefore, this dataset allows us to assess whether, and to what selgi@®n bias
may exist inpatent data studies. Specifically, the way in which we will assess the pregence o

selection bias and the impact that this might have on the statisticahocd#eteawn from

1 To help mask the identity of our industrial peat, we do not report the sample period to which our patents and
inventions data relate to and the exact number of inventions developad byganization. Further, weport

the total number ahe firm’sinventions and patengdter reducing iby a raadom percentage valuahile using

the full population in our analysis



patent based studies is by replicating two studies examining the sourcdmofdgical
breakthroughs using our dataset: one by Singh and Fleming (2010) on the impact of
collaboration on the variance of creative outcome distributions and the other by Audia and
Goncalo (2007)he impact binventors’ past success in their future creativity performance.
To do sowe will first estimate the models presented in these two studies using only the
subset of inventions in our sample whiwve been granted a patent by the US Patent Office
(USPTO). This first step ainte asseswhether the findings obtained in these studies hold
for the sample of patents grantedteo firm. Second, we will estimate the samedels
controlling for selection bias derived from the inabibfyprior workto observe nompatented
inventions.

Our resultssuggest thaselection biasloesmatter. In shortwe show how selection
biasaffects theimpactof some important drivers ofétheterogeneitgf patented inventions.
In particular this bias leads to an overestimation of the likelihood of inventor teams
generatingow quality innovative outcomes, and of the influence of an inventor’s prior
innovative success on both the likelihood of patenting and the number of explorative ideas.
However we do not find evidence of selection bias in models explaining high quality patents.
In our conclusions, we explore the implications of these findings for cugeedrch and

suggestion potential corrective measures to help ensure more valid patent workifaréhe f

BACKGROUND
There is little doubt about the value of patent data; it has been essential to teegprogr
of the field of innovation studies over the past 30 years. Given the eaBilait can be
attained, it is unsurprising to find more than 17,000 papers when simply searchipgtémnt “
data” and “innovation” on Google Scholar. In recent years, there has been afsitgkes

drawing on the NBER database and other online sources to understand invention and



innovation through the window of patenting behavior. Indeed, these studies using patent data
have become the cornerstone of our understanding of how firms can support innovation. For
example, the most cited paperAdministiative Science Quarterlyn innovation since 2000

is the Ahuja (2000) study of collaboration and patenting. Over time, these patent lstwveies
used larger datasets and increasingly more complex analytical approaches te ¢éxamin
information contained in patents. They have also increasingly been used to link patent

range of other managerial choices and behaviors, helping to unlock a wide ramgjghsf i

about what firms know and can do.

At the same time, we have always known that patent data is far from perfect. 8/hen it
computerization around the beginning of the 1980s sparked huge inteeestd., Griliches,

1984 for an overviewyesearchers were clear in stating potential issues of selectivity or
differences between R&D, patenting, and innovation—in fact, those were some afshe m
crucial questions tackled. In addition, these early authors pointed out numerous opesrtuniti
for research on a nevbeforeattainable largecale dataset, in whose creation and
refinement they were eventually instrumeri@Gitiliches, 1984Hall et al., 2002).

Since then, although considerable progress has been made in innovation studies and
related fieldghanks to patent studies, the problems that come with using (exclusively) this
data have been relegated to a few symbolic cites to those early inaskse respects,
patent data has tended to increasingly be ‘reified’, treated as if it was anignansh direct
measure for inventioandinnovation. The reification of patent data may sow confusion
between these imperfect measures anddéakty of innovation itself. In doing so, there is a
danger that researchers fall into what Alfred North Whitehead dakedallacy of
misplaced correctnes@/NVhitehead, 1925, p. 51). In thdl@aing, wefocus one aspect for
why this approacmay be problematic: selection hias

Selection Bias: Issues with Assessing the Quality of Inventions



Although €holars have been abledonsiderably increase our understanding of the
institutional, technalgical and legal contexts that shafrens’ strategic reasons for
patentingwe still know relatively little aboutvhat affecs the organization’s decision to
patent an invention. In particular, we do not know how the selection process inside
organizations concerning the decision to patent an invention adi@gssatistical inference
drawn from studies using patent data. First, not all inventions are patentable duecto expli
legal exclusion. Second, not all inventions are patented because firms may decidecto prot
their innovations by alternative appropriability methods, for example by keeping the
invention secret. Third, and most importantly, many inventions are testt@abecause they
do not pass an (ietal-defined) novelty step and/or are not deemed useful to the inventor or
thefirm. As a resultwhen using patent data we are only able to observe a reduced sample of
inventions. If the main purpose of a study is to examine the inventive activity afamthe
individual or a firm, then patent data suffer fromimportantform of selection bias.

As pointed out by Gittelma(2008), the presence s¢lection biasvill affectin
particular thosstudies which examine the quality of inventions as the researcher will be
dealing with a significant level of unobserved heterogeneity. It might be sdipgeconcern
when analyzing the variance in innovative outcomes (Girotra et al.; 3digh & Fleming,
2010 Taylor & Greve, 2006)as the researcharay beunable to observe the low end of the
quality distribution At the same timat will also affect those studies which examine how
inventors’past experience shegtheir innovative performance as less successful events are
not taken into account (Audia & Goncalo, 20@bnti et al., 2014)—such information would
need to be gathered through eidehal sources different from patent dé@iuri et al., 2007).
Finally, firms’ or individuals’ propensity to patent cannot be reliably observed froncpubl
data alondde Rassenfosse & van Pottelsberghe de la Potterie, RO0&na et al., 2013).

Although using past patent experience might be a useful proxy for inventor expertas



an imperfectone, as it assumesclose match between the number of inventions and patents
of an individual. It could be that some individuals are prolific inventors, but patent only
rarely due to theirqgference for quality and/or they lack of resources to pay the costs of
patenting. There may also be individuals who patent all their inventions, regardlesis of t
quality, simply because they have additional resources to funding their pateffdirts.

More formally, based on the exposition in Stolzenberg and Relles (1997), suppose that
Y; is the dependent variable arida binary indicator for whether or not the invention is
patentedY; is only observed for those inventions which have been patented (selected cases)
while is missing for other cases (censored cases)oliteme regression modelth only
one independent variable can then be wrigten

Y1 =P+ XB1 + o€ 1)

whereX is the independent variable explaining the outcome varlgbkndoe is the
regression error terms, wheras a scalar and is ~Normal(0,1).

Theselection equatiofor the same data can thee defined as:

Y,=aZ+$§ (2)

whereZ is a vector of independent variables which explain the likelihood of patenting
an invention and is the error term which isNormal(0,1).

Y, is observed only iY, is greater thait (the selectia threshold). For a given value of
Z, the probability of selection depends on the valug ef ands. If «is equal to zero, then
selection is random and, as a result, the sample used to estimate equation 1ris smalle
However if the selection is naadom, by estimating equation 1 one would introduce a bias
in the coefficient estimate &f. In particular, Heckman (1976) derived the conditional
expectation o¥; given thatY; is observegdas:

E(Y11Y, > T) = Bo + Xy + 0pes (T — aZ) (3)

Wherep,s is the correlation betweenandd, andA is the inverse of thklills’ Ratio



which is equalA(T — aZ) = ¢(T — aZ)/[1 — O(T — aZ)] with ¢(-) and®(-) being the
standard normal probability density and standard normal cumulative densitprfisnct
Therefore if selection is random aangd.s = 0, thenp; can be consistently estimated using

the sample of patents. Howeverdlection in not random angp,s # 0, estimating equation

() without including the invergdills’ ratio will produce biased estimates because the model
will suffer from omitted variable bias.

In the presence of selection, equation 3 can be estimated using the Heckman sample
selection model, in which the estimate of the inverse Mdlso from a probit regression
explaining the likelihood of an invention being protected with a patent is then used in the
model explaining invention quality. Whifg is identified in the Heckman procedure even if
Z = X, due to the nonlinearity of the invergils’ ratio, for more precise estimates of
coefficients ing;, it is useful to include i@ exogenous variables which affect the likelihood

of an invention being protected with a patent but do not atiecbutcome variablg, .

DATA AND METHODS

Sample

In this study, we exploit a unique dataset of invention disclosures made by all
employees working for a large multinational company operating in a cofppdelxict
industry which we will call Venus for reasons of confidentiality. A total of 35,144 invesiti
were submitted by inventors during this sample period. As is common in many large
technology-based companies, all employees in Venus, whether workingxtéthal parties
or not, are requested to document their inventions and to store this information in an IT
system so that tisecan be subsequently evaluated by a team of patent engineers and experts.
The main objective of the evaluation team is to degidether the invention contains a

novelty step and whether it is useful to the firm either by potentially beiogioated into a



product or service or as a means of production or service provision. The evaluation process
can result in four different outmnes:
1. The invention is not novel or does not contain an inventive step; therefore Venus does
not acquire the rights to this invention—the invention is thus “given” to the inventor.
2. The invention contains an inventive step but isaustentlyconsideredo be useful
for the company, so Venus decides not to seek patent protection but keeps the rights
to this invention as it might be patented in the future.
3. The inventiorhasbeen judgedo benovel and useful and Venus proceadih
applying for patent protection in one or several patent offices.
4. The invention is considered novel and useful but Venus decides to keep the invention
secret.
Almost half of the inventions in our sample are considered as not new or obvious (ca)egory
and are thus of low qualitydm the perspective of the firm. Categories 2 and 4 are interesting
as they might represent high quality inventions which the company decides not to protect
with a patent. Thus, if there is a selection bias in current studies examininglealua
innovations, then this might also stem from these types of inventions. However, onyy a ver
small proportion of inventions are kept secret in Venus (less than 1%), but almost 10% of
inventions fall under category 2 above, i.e. they do contain an inventive step but they are not
yet deemed useful for Venus. Eventually, only 15% of these inventions are patented by the
firm, so the vast majority of these inventions, although potentially of high qualityns &
novelty, will never appear in patent databases. The remaining inventions (cafegi@y 3
patented.
Data Preparation
To be able to test for the presence of a selection bias in the stuelidscided to

replicate, we adopt a twatepapproach a la Heckmatescribed abovehere first we



estimate therobability that an invention has been protected with a granted patent using the
entire sample of invention disclosures and then we estimatedtiel explaining the main
outcome variabl@sing only the subset of inventions which have been patented taking into
account the estimated probability that an invention is protected \giidinéed patent, as
captured by the inver3dills’ ratio. As mentioned above, fwreciselyestimate these two

modds, however, we need a variable which explains the selection process, i.e. why the
evaluation team has decided to patent the inventiorwiigh does not influence the

outcome variable used in the outcome regression model.

To better understand the evaluation process, we carried out 20 explorsongws
with inventors patent engineers, experts, and managers of legal and IP departments, as well
as taking partn numerous formal and informadeetings. Furthegne of the authors spent 40
days observing team of patent engineatsaling with the evaluation of new invention
disclosures and the maintenance of Venus’ patent portfolios.

Through these interviews and observations, we found out that one of the main reasons
explaining why novel inventions are not considered useful and thus are not patented is
because they are originatiedm outside a formal project. As in many other organizations,
inventors in Venus work on pet or bootleg projects (Criscuolo et al., 2014), i.e. projects
which are non-programmed innovation effatslnot officially authorized by the
organization. Engagement in these activities can often result in inventions whibbrare
disclosed to and evaluated by the organization. Although novel, these inventions do not
always fit with the main strategic and technological prioritiethe firm andnaynotbe
easily or directly incorporated in thempany products. As a result, inventions resultiogn
creative efforts outside formal projects are often ndwat not usefu{category 2)

Therefore to improveidentification in the tweequation systenrwe used a dummy

variable which is equal to one if the invention under evaluatiginated from an official
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R&D project. Unfortunately, this information is available only for a subset (28%)rof ou
invention disclosures, which resulted in 1,910 USPTO granted patents. For te&efirst-
selection modehe furthercontrol for the technology area of the invention using Venus’s
internal technology classification. Each invention disclosure is classifidteibesponsible

patent engineer in one or multipleddit technology classes.

ANALYSIS

To assess thexeent of the selection bias introduced by the unobservability of
inventions which are not patented, we replicated the results of two recent dtatiesed
patent data to examine what drives the emergence of technological breakthrotaghsing
on the impact of collaboration among teams of inventors and of past creative outcomes.

Thefirst study,by Singh and Flemin@2010),focuses on team size and the resulting

collaboration among inventors as a source of inventions with extremely high qaraditsilso
assesses the effect ofghiactor in explaining the occurrence of inventions of extremely low
quality. Their main angment is that teams of inventors are more likely to discover
breakthroughs because of their greater diversity of knowledge which in turn leaglseo hi
combinatorial opportunity. But teams of inventors are also less likely to producgi&dity
inventions because of the greater and more rigorous process of ideas seledtiermA
mechanism through which team size affects the generation of technologatdhbwagh is
the diversity of the team background, the authors postulate that the techn@rperaéénce
of the team of inventors and the size of their network of indirect collaboratorstentédia
quality of their innovative efforts. One of key featuogshis study is that it tries teeamine
the entire distribution of creative outcomes” (p. 41), but by using patent data it Gathnot
capture the entire distribution as low quality inventions, thoseatkatot patented, are

missing from the lower tail of the distribution. In other words, the distribution musfttbe
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truncated’

In particular thesample selection problem which might bias the estimates of this study
can be formally described as follows. In thécome regression modg@quation 1Y; is
invention quality an is team affiliationand in theselection equatioi, (equation 2) is the
likelihood of patenting an invention. Note that under the assumptions made by these authors
a, andpB; expected to be positive. Thus we can rewrite equations 1 and 2 as:

Quality = o + f1Team + o¢
Patenting = a;Team + §

If it is true, as it is often assumed in literature, that unpatented inventions did not pass
the threshold of novelty necessary to deserve fmabented, then the sample of selected cases
is under-representing single inventor inventions and the coefficieaqurf affiliationwill be
biased downward. In other words, if we observe an invention by a single inventor among the
patented inventions, theemight be other reasons — captured in the error term & — which
could explain why this invention was patented which could also explain its quality. As a
result thecoTeamd)<0 and the error ternisandoe are likely be correlated meaning that
alsocoTeam g¢)<0. If we rewrite the quality equation to include the error term from the
selection equation we get:

Quality = By + f1Team + [,0 + o¢

If we assume thak, is positive, then ignoring and attributing all its impact to the

Teamvariable will have a negative effect on the magnitudg, of.e. 5; will be downward

biased. Ifinstead we consider that not all novel inventions are patented (for example, some

2 Additionally, the variables for the size of the invergaretworks of direct and indirect collaborators and their
technological experience are likely to be measured with errahjifpatented inventions are consideried.
results available on request from the authaescompare the effects on the likelihood of producing high and
low-quality patents of these variable when they are calculated using tet sfimventions which aggatented
versus the whole set of inventions. The results show that the effactrafja experience on the likelihood of
generating higiguality patents is significantly undestimated, while the effects of both average and joint
experience on the likeldod of generating lowguality patents is significantly ov@stimated when only patent
data is used to construct these variables. This implies that the measueerars in these variables are ‘non
classical’ and lead to biased and inconsistent estimates.

12



novel inventions may not help the company pursue its objsgtitheen the sample of selected
cases is undeepresenting inventions discovered by team of inventors and the coefficient of
team affiliationwill also be biased downward.
A similar problemaffects thesecond study, by Audia and Goncalo (2007). In this

paper the authors focus on an inventqoast experience in successful creative efforts as a
driver for the subsequent generation of explorative ideas. Audia and Goncalo posit tha
inventors with a strong track record of producing inventions might be better able to develop
more inventions because they become faster and more efficient at genezatimgas.
However past experience becomes an obstacle for the generation of explorative ideas
because successful inventors tend to apply the same heuristics used in the pasitzand t
from familiar knowledge sets. The negative impact of past success on the dev¢lopme
divergent ideas isjowever moderated by the presence of other inventors involved in the
creative efforts. By relying only on those creative ideas which were pdiehts study is
unable to fully measure an invenpast and currdg experienceas it disregards the creative
endeavors which did not result in a patent. One could assume, as the authors do, that the
selection is random (i.e. o in equation 2 is equal to 0) and the only consequence is that one
would estimate equation litw a smaller sample. Howevehis might not be true as there
might be a relatively high level of unobserved heterogeneity at the inventomielelri
ability to generate inventions which are then pateagedell as in their ability to develop
inventions which are divergent from past innovative effontshis caseit is difficult to
predict the direction of the biage will assume instead that we expect not to find any
selection bias as predicted by Audia and Goncalo.
Replicating Singh and Fleming’sstudy

We start by reporting the results of our estimations oSihgh and Fleming’s models

using the subset of USPTO patents for which we have information on whether the invention
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is linked to an official project. Results for the sample of USPTO patents andedah the
appendix (see Table Al). To enable the reader to compare our results to the otes irepor

the Singh and Flemirig paper, we have kept the same variable labels. The main independent
and control variables were computed following the description provided in the paper and
using only the USPTO patent applications which were granted. However, as ouoimventi
disclosures dataset uniquely identifies inventors, we included also the invemiibns a
corresponding patents granted made by inventors residing outside the US.

Regarding the dependent variable, to determine whether a patent is in the top 5% in
terms of frequency of forward citations, we compared the citations redanbe focal
patent with those received by patents aphiethe same year and in the same primaajgi&

IPC technology classification. To derive the citation frequency and theeiney
distributions per year and technology clags,used citations made by patentplegal for in
all patent officestather ttan only within USPTO citationAlthough our models use data
from a more recent period, all the variables capturing different aspectstefth of
inventors were derived using invention disclosures since Venus’ inception. We have,
however, not used the data for this longer time period in our regressions as there are
relatively few observations during this earlier period.

Before reporting the estimation results, we looked at whether inventionsgtg sin
inventors tend to be of lower quality than those with multiple inventors using the sample of
35,144. More than half of the inventions in our sample are generated by individual inventors
and 62%of thesefall in our lowest quality category, which seems to confirm Singh and
Fleming’'s main expectation. As the numbemafentors in the team increasése proportion
of inventions considered prior art decreases, while the number of patented inventions

increases. However, we cannot observe a systematic trend as it seems that teamagewith

3 We have estimated models using the wittiBPTO citation frequencigbut we decided not to report them
here athe resultsverenot consistentvith the ones obtained by Fleming and Singh as the team size variable
was not always significant.
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than four inventors produce marginally more inventions of relatively lower quality. The
proportion of novel but not useful inventions, however, does not change dramatically as the
size of the team increases.

Tablel reports the summary statistics for the variables used in our main masiéts
the sample used in the Singh and Fleming’s paper, the experiencetandk size variables
display high skewvith network size playing a maximum value of over several hundred
inventors and standard deviation of 63. The percentage of granéedispahich received
zero forward citations is equal to 9% in our sample, which is consistent we what found in the
sample used by Singh and Fleming (7%). However, the proportion of patents in the top 5% of
the distribution of forward citations is much higher in our sample (18%) than in the sample
used by Singh and Flemiri§%). In Table 2we report the correlation matrix among the

variables used in the regressions.
--- INSERT TABLES1 and 2HERE---

Table 3contains the coefficient estimates of the maodsis of the Singh and
Fleming’s paper (see their Table 6). We estimated also the negative bin@mdé&smwhich
regress the two mediation variables (experience diversity and networkisizéound that
team’s size had a positive and significant impa&xplaining both variables (see Tables 2A
in the appendix). According to the estimd@sModel 1, patents with more than one
inventor are 11.3% more likely to be in thé"@®rcentile of the citations than patents with
only one inventor. This effect @gnificantly smaller thawhat wasound by Singh and
Fleming (28%)but it is significant athe 1%-evel. We also found that team affiliation
affects the likelihood of poor outcome pateritse estimatef theteamvariable in Model 6

indicates that pants grargd to teams of inventors are 686s likely to receive zero citations
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than those granted to single inventbiodels 2-5 and Models 7-10 include the mediator
variables experience diversity and network size and their interactionsdal i4,we found
that experience diversity, although significant, has the opposite sign than whetegr®y
Singh and Fleming. Network size is only significant and positive in Models 4 and 5.
Thereforewe could not replicate the mediation effects of these twiahlas in our sample
of breakthrough innovations. Similarly, experience diversity is not significanboteM? and

network size is only significant and negative in Model 10.
--- INSERT TABLE 3 HERE™

In Table4, we report the estimates of the samedels but controlling for the possible
selection bias introduced by not including inventions which were not patented. To this end,
we first estimated a probit model predict the likelihood that an invention was protected
with a patent granted by the UBP using the entire sample of inventions for which we have
information on whether the invention was stemming from an R&D project or not. We
included as explanatory variables in this firsgstanodel a dummy variable eqialone if
the invention was generated in an R&D project, another dummy variable equal to one if the
invention was the result of collaboration among multiple inventors, the logarithm
transformation of the average number of previous inventions for the team of inventors, the
logarithm trangbrmation of the number of past inventions invented by the same team, and 15
onedigit technology class dummies. It is interesting to report that the coefficiémt &&D
project variable wapositive and significant at one perceanfirming our expectains.

From this first stage modeke derived the invergdills’ ratio which we included in the

second stage logit models reported in Tabte 4.

4 Similar results in terms of significance of the coefficient estimates are fourlde larger sample of patents
reported in Table 1A in the appendix. However effect sizes are much sm#itérabd4.1% for high and
poor quality outcomes, respectively.

> We also estimated tteame models using the heckpadmmand irSTATA whichfits maximumlikelihood
probit models with sample selectiand produces the correct standard errors that control for thstéwo
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--- INSERT TABLE 4 HERE™

The inverseMills’ ratio is never significant in Models 1-But it is significant in
Models 6-10 of Table 4. This suggests that the selection bias affects only treiestof
the poor quality outcomes and not for the high quality ones. This implies that by not
including all the inventions generated by scientists and engineers in,VYesearchersould
not underestimate the effect of team affiliation on the likelihood of gengrathnology
breakthroughshut they will overestimate the effect of team affiliation on the likelihood of
generating poor innovative outcomes. Indebkd,dffect of team affiliation is now equal to
3.7%according to the estimates of Model 6, instead of 6% and this differenctsitcstidy
significant at the 1% level.

However the only way to correctly estimate the real effect of team affiliation on the
likelihood of generating poor innovative outcomes is by considering all inventions and
estimating a logit model with a dependent variable equal to 1 if the invention was not
patentedNlotpa, i.e. it was neither novel nor useful. Similarly, one coutdrede the
likelihood of an invention being prior afKorart), i.e. not novel, or of an invention being
novel but not usefulNotusefu). These regressions are reported in Tabkeing part of a
team has a negative and significant effect on the ligelil of an invention not being patented
and also of an invention not being novebwever it has a positive and significant impact on
the likelihood of producing an invention which is novel but not useful (see Model 9), which
suggests that this type ofviention might be more similar to patented inventions than those in
the other categories. The effect sizes are quite,laspecially if compared with what
obtained by Singh and Fleming. According to the coefficient estimates ofl Mlodeentors

working in a team are 22.8% less likely to generate inventions which are gatemdone

estimation approach. However, we decided to repertdhults obtained by including the inverse Mills’ ratio
in the second stage logit model to allow comparison with Fleming ant’Sipaper.
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inventors. The mediation effects of network size appear to have the expected sign and
significance, but the one for experience diversity goes in the oppositeatirteinwhat

found by Singh and Fleming for the non-patenting and prior art outcomes.

--- INSERT TABLE 5 HERE---

Replicating Audia and Goncalo’s study

While Singh and Fleminglearly stated that the regressions were estimated using the
patent as unit of analysis, in the Audia and Gonpajeer it was unclear whether this was
the case. As the authors state that “when a patent has multiple inventorsipareeattro
each inventor listed as -@uthor” (p. 7), we have assumed that the unit of analysis i®atpa
inventor dyad. Also, the authors dot explicitly statavhetherthey usepatent applications or
grantedpatens. As the source of the data is tHEPTO, we have assumed that the authors
have used granted patents.

One of key variables in this study is the past success of an individual inventor in
his/her creative endeavor. Audia and Goncalo assume that inventors will comparagheir p
performance with that of other inventors specialized in the same technodagyAara result,
they measure this variable by calculating the number of patents developedh loyveator in
the preceding two years minus the average number of patents generated by othasimvent
the same technology area during the same period. We followed a similar prooedure t
compute this variable using our sample of inventors. First, we extractedeaitpgtanted to
each inventor since Venus'’s inception and identified the main area of specialasatie
IPC technology class with the highest share of patents. Second, we deeivetative
success measure for each inventor by applying Audia and Goncalo’s foAsula. have
information on all inventions developed by an individual, we calculated the successameasu

as well as all the other measures both using invention datalesswesing the sample of
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those patents granted at the USPTO. We also controlled for when the inventocdirstdea
granted patent from the USPTO by deriving three cohort dummy variables: oneciioiors

who obtained their first patent from this pdteffice during the early years of operation of
Venus Cohort with first patent first perigdone for inventors who received their first patent

in the more recent years, and one for the inventors who were granted thpatérstin

between these two peds (Cohort with first patensecondperiod. When we estimate our
models using the sample of inventions we computed these cohort dummy variableleausing t
date of an inventor first invention.

Before presenting our results, we wanted to evaluate whethgrlausible that the
selectionproblem - although present - is random. We derived the proportion of patented
inventions over the total number of inventions generated by all the inventors in our sample
with more than two inventions. We did not take into account at wyatént office the
invention was protected amee considered patent applications instead of only granted
patents. As shown in Figurethere is a lot of variatioacross inventors in their proportion
of patented inventions, which suggetitat there might a systematic bias introduced when
one only considered the subset of patented inventions.

--- INSERT FIGURE 1 HERE--

Table 6 presents the summary statistics of the variables used to replicaeaAdidi
Goncalo’s paper. It is worth noting that the maximum number of subclasses and new
subclasses in our sample is smaller than what was found in the sample analfmedland
Goncalo. This can be the result of our use primary and secondary IPC classifitstead of
the USPTO subclasseBhe success measure derived using our sample of USPTO granted
patents displays a wider range (min=-2, max=17.5) than the one used by Audia and Goncalo
(min=-1.3 and max=0.995). This may be due to the fact that our sample of inventors seems to

be more prolific than the ones in their sample: the yearly average numbegrdspatour
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sample varies between 1 and 1.78; and among our inventors there are some very productive

ones: 2% of inventors are granted more than five patents a year.

--- INSERT TABLE 6 HERE---

In Table 7, we report the coefficients of the Cox propoditiazard model estimations.
Due to the high number of inventors in our sample, we could not estimate the inventor-
specific fixed effect model. Models 1 and 2 are estimated using the sainmaients for
which we have information on whether the invention was generated within the scope of a
R&D project or not. Model 1 does not produce consistent estimates for the controlegriabl
to the ones reported in Table 2 of Audia and Goncalo’s papparticularthe inventor
proportion ofsolo-inventor’s patentis not significant and theumulative inventor patents
variable is negative and significant. Model 2, however, confirms what is predicteduartt f
by Audia and Goncalo, namely that the prior success of an inventor has a positisteompa
the likelihood of patenting; the magnitude of this effect is relatively consistenthaith
found in their study. Using the minimum and maximum value of their success variable
(min=-1.31, max= 0.99)we conputed that the least successful inventors are 19% less likely
(instead of 31%) to patent than the most successful inventors.

Models 3 and 4 include the invengills’ ratio which was generated from a fisgge
probit model where we predicted the likeldd of an invention being granted a patent from
the USPTO. As explanatory variables in this model, we included whether the inveation w
linked to an R&D project or not, whether it was generated by a team of inventors, and the
cumulative number of inventions that the inventors have developed so far. Finally, veé contr
for technology fixed-effects by including 15 odgjit technology class dummieBhe inverse
Mills’ ratio is negative and significant in both Models suggesting that the estimadvexlels
1 and 2 are affected by a selection bias. However, the inclusion of the invéissediio
does not seem to affect substantially the magnitude of the coefficient estintht fo
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inventor’s succesgariable. We do notice a substantial change in the edfebis variable

when we consider all inventions that an inventor has generated and not only those protected
by a USPTO granted patent. These results are reported indvibdall 6 of Table 7. Using

the estimates of Model 6, we calculated that the differ@m the likelihood of generating an
invention between the least and most successful inventors in Audia and Goncalo’s study is
8%, i.e. more than three times smaller than what was found in their study and moveothan t
times smaller than what was found\todel 2° Thus, by measuring the success of an

inventor using only the number ofagrted patents, the researcher mag\estimating the

impact of past success on the likelihood of generating new ideas.
--- INSERT TABLE 7 HERE ---

In Table 8, we rept the estimates of the randegffects Poisson models predicting the
number of new subclassesdRjit IPC technology classes) in which a patent is classified
which are new to the inventor. Model 1 shows results consistent to the ones obtained by
Audia and Goncalo: the proportion of sole-inventor patents has a negative and significant
impact on the probability that an inventor generates a patent in new technologwhileas,
the number of IPC classes in which a patent is classified increases this Igyolhabdel 2
includes the variable capturing the innovative performance of the focal inventor which i
negative and significant, confirming what was found by Audia and Goncalo and providing
support for their Hypothesis 2, which stated that inventors whe besn successful in the
past are less likely to generate divergent ideas. To compare the magniudeaéfficient
estimate with that found by Audia and Goncalo, we calculate the differenceprotiability
of developing patents in new subclasses/benh the mosirfventor’s succes$).99) and least

(inventor’s success1.131) successful inventors in their sample. According to the coefficient

6 We could notest whether these two coefficients are statistically different becaziseetiningly unrelated
estmationprocedure cannot be implemented with a Cox hazard model.
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estimate in Model 2, this difference is equalGd%, which corresponds to more than double
the size of the &kct found by Audia and Goncalo. Model 3 includes the interaction term
between théenventor’s succesand theproportion of sole-inventor patentghis interaction
effect is positive and significant, instead of being negative and signifidaus, We do not
find support for their Hypothesis 3.

Of most interest are the results reported in Moddsvhere we introduce the inverse
Mills’ ratio to control for the selection bias which could be present in the previoussnodel
due to the fact that we only observe inventions which have been protected with a granted
patent. The inverse Mills’ ratio is always positive and significant in theselssuaiggesting
that the estimates of the previous models might be biased. To assess the éxiebiasdf we
calculate the difference between the most and least successful inventorbeisiogfticient
estimate obtained in Model 5 and found that this difference is now -65.8%. Thus, although
there is a selection bias, this does not seem to affect the impact of the mpéndetd
variable. The last three models in Table 8 reports the results obtained by usngrthe
sample of inventions. The sign and significance of the coefficients are consisidret
found using the subset of patented inventions, however the mdgt the coefficient for
the success variable produces a difference in the probability of generagngedivideas
between the most and least success inventors significantly smaller thaiowvithin Model
2 (-12% vs. -64%].Thus, also in this case, by taking into consideration all innovative efforts
of an individual and not only those leading to a granted patent, we found that a successful
track record does affect the ability of an inventor to produce ideas which deviaténérom

past, but this impags relatively small.

--- INSERT TABLE 8 HERE™

7 We could notest whether these two coefficients are statistically different becasiseetiningly unrelated
estimationprocedure cannot be implemented with the random effects poisson model
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DISCUSSION

In this study, we have tried to shed new light on the use and usefulness of patent data.
In particular, by looking at what happens before a patent application is filgghalwwas to
undersand whether the fact that some actions regularly occurring as part of theviavent
process cannot be observed in patent data would introduce a significant bias in works
building on patent data. To do so, we focused on the pivotal issue of selection bias and built
on a companynternal dataset to replicate selected studies.

While it is clear that working with the internal data of just one company limits the
generalizability of our findings, they are an important first steghowingthat the above
problemsdo indeed existAnd to do so, valuable inteampany data is needed, which we
present, to the best of our knowledge, at a quality and depth rarely seen before in the
literature. In addition, the methods that we employed made clear that cortifyarateed
exists. For our replication studies focusing on selection, we always provideskdiriba
effect for our sample, and then focused on the changes that occurred when introducing the
additional information we had available—and importantly, the baselineinalways
looked similar to the results of the original studies. In short, while our faesisierely on
providing some initial evidence on the potential magnitude of the problem we highleght, w
would go as far as claim the values we uncover shouldifiet much from the general
population of firms, and definitely not from those similar to Venus.

In turn, these results indeed cast a shadow of doubt on some elements of the work
building on patent data. First, focusing on potential selection issues, our stuolysti&ates
that patent data is subject to significant-Eéte truncation, as many of the low-quality
inventions are simply not observed. Although this has been commented upon previously, ours
is the first study that we know of to actually demonstratestiaée of this selection bias. Our

results suggest that patdydsed studies of performance are liable to underestimate the
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amount of inventive failure and therefore effort made in large organizationy ameebtors.

As a result, the studies of inventiseccess may overplay the salience of many variables in
shaping innovative success, as many of our expectations about the value of patents and the
underpinning drivers of creative success are subject to a significant dégystematic
measurement error.his would suggest that authors give greater attention to the dangers of
directly attributing some behaviors and experiences to positive creatiwrmsgcholding

back from drawing strong inferences about causality with respect to the oiitawvention

from incomplete patent data. At the same time, though, we find some corroboratioméor s

of the critical variables in recent work on patents, such as the effect oataation of high

guality inventions and the importance of prior experience amdutiventive success.

CONCLUSION

There is an increasing understanding that many aspects of managerial anateorpor
behavior are subject to hard to observe selection processes (e.g., BeriKaV#g3 &
Denrell, 2008) These selection processes may hide from researchers some of the key drivers
of performance outcomes or lead researtheuggesthatsomebehaviors drive
performance when they do ndhis is because in management researehysually only see
the part of a population — the firms, individuals and inventidhat-appear on public
records and repositories. Failure, partial attengatd incomplete efforts are often
unrecordedhidden away behind organizational walls or obscured by poor information.

Patent data has always been known to be subject to sample selection. Yet, to date, few
studies have attempted to account for this fact. Our study provides an attenapiple with
this challenge. Or results raise a clear note afution on the interpretation of this data. We
urge our fellow researchers not to be lured by patent data’s availability arddezkpetency,

but they instead should make substantial efforts at either focusing on stuelgagch
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guestions that can be covered with patent data, or on complementing it with other gburces
data to overcome the issues we have identified. To move the field forward in thjsaspiri
see several opportunities.

First, patenthased work may benefit from purposefully limiting itself to those bits of
the innovation process it can actually descrilteese parts after the firm has made a decision
to file an invention—and drop inferences about what might have happened before. For
example, comparing the applicatiomer{patentgranted rate as a proxy for organizational
skill or innovative capabilitycrossfirms may be misleading if one acknowledges that
organizations’ selection decisions with regards to patenting inventions vapursécif a
firm only files its best inventions, it will get more patents granted when comparduirto a
that files pretty much everything. Howeveiithin-firm comparisons may still be appropriate.
For example, a firm’s increase in patenting success following specific matageisions
(given these do not affect the propensity to patent an invention) may allow to derglrés
about their efficacy. At the same, one could also study factors that would change the
propensity to patent (given these do not change the average quality of the firmteoims)e

Secondthe most promising approach we see is the complementing of patent data with
primary data collected from inventors or companies. While it may indeed lidi&nd
costly to attain such data, it is not imposstbfer example, beyond our studyamy
examples exist where researchers attained access to a limited set of inventivese laiie
to attain their complete history, including for example inventor surveys (&iati, 2007 pr
the study of university inventors (Kotha et al., 2013).

Patent data is and will remain a key témi research on the innovation process, as it
provides a powerful lens on the nature of the people and technologies that underpin change in
the economic system. At the same time, research using this data needs to edteitiper

strong degree of modesty about what is and what is not observed. This acknowledgement
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could also be a spur to capture new and related data and information on the innovation

process.
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TABLES AND FIGURES

Figure 1 Distribution of the proportion of patented inventions by inventas in our sample
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Proportion of patented inventions

Table 1 Summary statistics (N=1,910)

Mean S.D. Min Max
Cites_p95 0.182 0.386 0 1
CitesEQO 0.088 0.284 0 1
Team 0.632 0.482 0 1
Claims 26.094 17.516 1 330
Patent_references 14.686 14.715 0 134
Nonpatent_references 5.616 10.266 0 128
Average_experience 7.413 9.126 0 85
Joint_experience 1.025 1.457 0 18
Experience_diversity 2.155 1.666 0 11
Network_size 34.531 63.16 0 666
Table 2 Correlation matrix among variables
1 2 3 4 5 6 7 8 9
1 Cites_p95
2 CiteseQO -0.147
3 Team 0.109 -0.038
4 In_claims 0.067 -0.058 0.109
5 In_patent_references 0.004 -0.053 0.050 0.090
6 In_nonpatent_references 0.018 -0.032 0.103 0.161 0.213
7 In_average_experience  0.032 0.034 0.158 0.137 0.044 0.162
8 In_joint_experience 0.079 -0.009 0.833 0.096 0.080 0.130 0.286
9 In_experience_diversity -0.001 0.042 0.328 0.175 0.106 0.122 0.785 0.343
10 In_network_size 0.070 0.000 0.341 0.131 0.063 0.148 0.634 0.317 0.604

Correlations30.045 significant at 5%
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Table 3 Regression Analyses of Extreme Outcomes upon Lone Invention

(€] 2 3 4 ®) (6) (7 (8 9 (10)
Cites_p95 Cites_p95 Cites_p95 Cites_p95 Cites _p95 CitesEQO CitesEQO CitesEQ0 CitesEQ0 CitesEQO

Regression Model Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic
Team 0.911™ 1.107" 0.795™ 0.982" 0.939" -0.832" -0.943™ -0.743" -0.856" -0.788"
(0.235) (0.247) (0.243) (0.254) (0.257) (0.308) (0.321) (0.328) (0.337) (0.343)

In_experience_diversity -0.530" -0.573" -0.429 0.284 0.319 0.0586
(0.211) (0.211) (0.256) (0.281) (0.280) (0.341)

In_network_size 0.0684 0.0850 0.170 -0.0701 -0.0777 -0.266
(0.0469) (0.0473) (0.0889) (0.0737) (0.0736) (0.152)

In_expdiverdy In_netsizeo -0.0731 0.145
(0.0676) (0.105)

In_claims 0.484™ 0.495™ 0.485™ 0.497" 0.495™ -0.637" -0.644™ -0.636™ -0.644™ -0.637"
(0.121) (0.119) (0.120) (0.118) (0.119) (0.152) (0.152) (0.152) (0.152) (0.152)

In_patent_references 0.169" 0.374" 0.0942 0.298" 0.273" 0.00261 -0.114 0.0763 -0.0466 0.0121
(0.0718) (0.106) (0.0878) (0.116) (0.119) (0.0948) (0.156) (0.127) (0.171) (0.177)

In_nonpatent_references -0.363 -0.447 -0.302 -0.379 -0.350 0.581 0.634" 0.547 0.602 0.556
(0.221) (0.223) (0.220) (0.222) (0.223) (0.302) (0.306) (0.302) (0.305) (0.307)

In_average_experience -0.0799 -0.0456 -0.0879 -0.0514 -0.0465 -0.192 -0.208 -0.187 -0.203 -0.218
(0.112) (0.114) (0.112) (0.114) (0.114) (0.120) (0.1212) (0.121) (0.121) (0.123)

In_joint_experience 0.0897 0.0787 0.0890 0.0769 0.0808 -0.150 -0.139 -0.146 -0.134 -0.152
(0.0631) (0.0622) (0.0635) (0.0628) (0.0633) (0.0848) (0.0845) (0.0843) (0.0840) (0.0829)

Year fixed effects Included Included Included Included Included Included Included Included Included Included
Technology fixed effects Included Included Included Included Included Included Included Included Included Included
Chi square test 107.674 113.597 109.288 116.670 120.229 105.145 106.629 105.163 107.095 107.010
Log-Likelihood -843.541 -840.098 -842.507 -838.545 -838.013 -513.661 -513.126 -513.074 -512.410 -511.202
Observations 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910

Robust standard errorsrftwo-tailed tests clustered by the first invenfosignificant at 10%;" significant at 5%
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Table 4 Regression Analyses of Extreme Outcomes upon Lone Inventiagcounting for selection bias

@ @ 3 4 ®) (6) 7 ® ©) (10)
Cites_p95 Cites_p95 Cites_p95 Cites_p95 Cites_p95 CitesEQO CiteseQ0 CiteseQ0  CitesEQO CitesEQO
Regression Model Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic
Team 0.995™ 1.205" 0.880™ 1.080™ 1.037" -0.516 -0.641" -0.465 -0.587 -0.496
(0.245) (0.254) (0.252) (0.261) (0.264) (0.314) (0.323) (0.330) (0.336) (0.344)
In_experience_diversity -0.543" -0.585" -0.448 0.300 0.320 -0.0261
(0.208) (0.208) (0.253) (0.269) (0.269) (0.333)
In_network_size 0.0680 0.0847 0.166 -0.0388 -0.0466 -0.296"
(0.0469) (0.0473) (0.0888) (0.0712) (0.0711) (0.150)
In_expdiversity X Inetsize -0.0696 0.190
(0.0675) (0.101)
In_claims 0.485™ 0.495™ 0.486™ 0.497" 0.495™ -0.528™ -0.537" -0.527" -0.536™ -0.529™
(0.121) (0.119) (0.120) (0.119) (0.119) (0.155) (0.156) (0.155) (0.156) (0.155)
In_patent_references 0.142 0.350™ 0.0684 0.274 0.251" 0.0413 -0.0779 0.0824 -0.0368 0.0398
(0.0736) (0.107) (0.0896) (0.118) (0.120) (0.0981) (0.150) (0.124) (0.162) (0.171)
In_nonpatent_references -0.361 -0.446" -0.301 -0.379 -0.351 0.449 0.503 0.429 0.482 0.421
(0.219) (0.221) (0.219) (0.221) (0.221) (0.294) (0.296) (0.294) (0.296) (0.300)
In_averag_experience -0.0917 -0.0571 -0.0997 -0.0629 -0.0581 -0.284" -0.300" -0.282" -0.298" -0.312
(0.113) (0.115) (0.113) (0.115) (0.115) (0.123) (0.123) (0.123) (0.124) (0.125)
In_joint_experience 0.108 0.0982 0.107 0.0962 0.0994 -0.0526 -0.0443 -0.0602 -0.0407 -0.0628
(0.0624) (0.0617) (0.0628) (0.0623) (0.0627) (0.0827)  (0.0823) (0.0823) (0.0819) (0.0804)
InverseMills’ Ratio 0.539 0.592 0.537 0.591 0.579 0.844 0.791 0.841 0.783 0.803
(0.369) (0.368) (0.371) (0.371) (0.371) (0.461) (0.461) (0.461) (0.462) (0.466)
Year fixed effects Included Included Included Included Included Included  Included Included Included Included
Technology fixed effects Included Included Included Included Included Included Included Included Included Included
Chi square test 109.574 117.082 111.116 120.197 123.548 86.458 87.667 86.826 88.192 92.534
Log-Likelihood -842.542 -838.906 -841.521 -837.368 -836.884 -527.881  -527.277 -527.698 -527.015 -524.844
Observations 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910

Robust standard errors for tvailed tests clustered by the first inventosignificant at 10%;" significant at 5%:" significant at 1%.
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Table 5 Regressions Analyses of Poor Innovative Outcom@s=35,144)

@ 2 3 4 ®) (6) @ (8) 9) (10) (11) (12)

Dependent Variable Notpat Notpat Notpat Notpat Priorart Priorart Priorart Priorart Notuseful ~ Notuseful = Notuseful — Notuseful
Regression Model Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic

Team -1.063" -1.211" -0.855™ -1.021" -0.775" -1.044" -0.743" -0.967" 0.168" 0.171 0.0197 0.0550
(0.0402) (0.0488) (0.0437) (0.0492) (0.0452) (0.0501) (0.0469) (0.0502) (0.0572) (0.0687) (0.0624) (0.0699)

In_experience_diversity 0.236" 0.351" 0.418" 0.420™ -0.00607 -0.204™
(0.0519) (0.0662) (0.0519) (0.0680) (0.0555) (0.0764)

In_network_size -0.119™ -0.165™ -0.0176 -0.0791" 0.0827" 0.0398
(0.0174) (0.0205) (0.0192) (0.0236) (0.0210) (0.0255)

In_expdiversity X In_netsize 0.00535 0.0143 0.0340™
(0.00975) (0.0112) (0.0110)

In_average_experience -0.186™ -0.342" -0.0438 -0.241" -0.0494 -0.333" -0.0285 -0.295™ 0.101™ 0.105" 0.00205 0.0508
(0.0208) (0.0455) (0.0335) (0.0476) (0.0235) (0.0483) (0.0391) (0.0519) (0.0228) (0.0441) (0.0387) (0.0479)

In_joint_experience 0.333" 0.374™ 0.276™ 0.318™ 0.188™ 0.260™ 0.179" 0.230™ -0.0523 -0.0533 -0.00964 -0.0344
(0.0282) (0.0298) (0.0302) (0.0316) (0.0379) (0.0360) (0.0383) (0.0338) (0.0356) (0.0372) (0.0374) (0.0398)

Year fixed effects Included Included Included Included Included Included Included Included Included Included Included Included
Technobgy fixed effects Included Included Included Included Included Included Included Included Included Included Included Included
Chi square test 109.574 117.082 111.116 120.197 123.548 86.458 87.667 86.826 88.192 92.534 109.574 117.082
Log-Likelihood -842.542  -838.906  -841521  -837.368  -836.884  -527.881  -527.277  -527.698 -527.015  -524.844  -842.542  -838.906

Robust standard errors for tvtailed tests clustered by the first inventosignificant at 10%;" significant at 5%
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Table 6 Descriptive statistics and correlations (N=4,183)

Mean S.D. Min  Max 1 2 3 4 5 6
1 Inventor success using patents 1512 3.047 -2 17583
2 Proportion soleinventor patents 0120 0259 O 1 0.187
3 New subclasses 0522 0743 O 5 -0.355 -0.198
4 Cumulative inventor patents 6.241 7.711 1 - 0.634 0.144 -0.368
5 Cohort with first patenfirst period 0.108 0.310 O 1 0.175 0.080 -0.155 0.387
6 Cohort with first patensecond period 0.642 0.480 0 1 0.109 0.044 -0.137 0.013 -0.46%
7 Number of subclasses 4.065 2501 1 17 0.032 0.007 0.151 0.017 -0.005 0.041

Correlations>|0.01&ignificant at 5%.

A The maximum of these two variables is not reported to avoid idetitificaf Venus
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Table 7 Cox Models of the probability of Pat@ting and Inventing

1) )

®)

(4)

©)

(6)

Cohort with first patent first period
Cohort with first patent second period
Proportion soleinventor patents
Cumulative inventor patents

Inventor success using patents
Inverse Mills' ratio

Cohort with first invention first period
Cohort with first invention secal period
Proportion soleinventor inventions
Cumulative inventor inventions

Inventor success using inventions

Log-Likelihood
Observations

2.084" 2.230"
(0.156) (0.154)
1.280" 1.295*
(0.0653)  (0.0755)
0.0860 0.0214
(0.0791)  (0.0805)
-0.0571*  -0.0844"
(0.00907)  (0.0149)
0.0921"
(0.0169)

30020.122 -29957.237 -29705.677 -29639.333 -904408.495

4,183 4,18

1.962"
(0.163)
1.311"
(0.0641)
0.242"
(0.0744)
-0.0198'
(0.00818)

-1.825"
(0.114)

4,183

2.114"
(0.155)
1.325"
(0.0735)
0.184°
(0.0763)
-0.0464™
(0.0136)
0.0922"
(0.0148)
-1.847"
(0.117)

4,183

1.101"
(0.117)
0.996™
(0.0550)
0.00546
(0.0399)

-0.0128"
(0.00389)

69,621

1.411"
(0.144)
1.143"
(0.0631)
0.0104
(0.0431)
-0.0309"
(0.00589)
0.0370"
(0.00517)

-901518.698

69,621

~ The number of observations is been reduced by a randomiy gexeentagdigure.
Robust standard errors for tvtailed tests clustered by the first inventosignificant at 10%;" significant at 5% significant at 1%
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Table 8Poisson Regressions of Patent Characteristics Indicative of Diverging Ciieae Efforts

()] ) @) 4 Q) (6)

@)

(8)

9)

Cohort with first patent first period

Cohort with first patent second period
Proportion soleinventor patents

Number of subclasses

Inventor success using patents

Success X Proportion of saleventor patents
Inverse Mills' ratio

Cohort with first invention first period
Cohort with first invention second period
Proportion soleinventor inventions

Inventor success using inventions

Success X Proportion of seileventor inventions
Constant

Log-Likelihood
Observations

-1.369°  -0.954"  -0.952°  -1.358"  -0.95I"  -0.949"
(0.122)  (0.114)  (0.114)  (0.121)  (0.114)  (0.114)
0590  -0.37T"  -0.362"  -0.598"  -0.358"  -0.349"
(0.0492)  (0.0449)  (0.0449)  (0.0490)  (0.0452)  (0.0452)
-1.483"  -0.794"  -1.102"  -1.436"  -0.800"  -1.111"
(0.141)  (0.123)  (0.149)  (0.140)  (0.123)  (0.149)
00842  0.082f"  0.0829"  0.0820°  0.0838"  0.0845"
(0.00799) (0.00756) (0.00756) (0.00800) (0.00759) (0.00759)

-0.290"  -0.328" -0.299"  -0.337"

(0.0153)  (0.0174) (0.0158)  (0.0179)
0.357" 0.359"
(0.0667) (0.0672)

-0.344"  0.210° 0.210"
(0.0915)  (0.0874)  (0.0871)

-0.438™ -0.492" -0.513" 0.0468 -0.793" -0.814™

(0.0510)  (0.0481)  (0.0485)  (0.138)  (0.135)  (0.135)
-3677.924 -3424.514 -3412.758 -3670.706 -3421.686 -3409.891

4,18 4,183 4,183 4,18 4,183 4,18

0.524"
(0.00382)

-0.375"
(0.0500)
-0.193"
(0.0114)
-0.340"
(0.0150)

-0.838"
(0.0104)
-88324.665
69,6217

0.508"
(0.00362)

-0.342"
(0.0405)
-0.130™
(0.00942)
-0.216™
(0.0136)
-0.0559"
(0.000752)

-0.820
(0.00942)
-85125.3%
69,6217

0.508"
(0.00361)

-0.338"
(0.0402)
-0.129™
(0.00937)
-0.243"
(0.0140)
-0.0609"
(0.000926)
0.0235"
(0.00238)
-0.820
(0.00939)
-85079.680
69,6217

N The number of observations is been reduced by a randomly drawn percaniege fi
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Appendix

Table 1A Regression Analyses of Extreme Outcomes upon Lone Invention usibgPTO patents(N=5,077)"

(€] 2 3 4 ®) (6) (7 (8 9) (10)
Cites_p95 Cites_p95 Cites_p95 Cites_p95 Cites_p95 CitesEQO CitesEQ0 CitesEQ0 CitesEQ0 CitesEQO

Regression Model Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic
Team 0.394™ 0.388™ 0.268 0.272 0.274 -0.629™ -0.682" -0.545™ -0.601™ -0.559™
(0.137) (0.146) (0.140) (0.147) (0.148) (0.179) (0.190) (0.187) (0.196) (0.196)

In_experience_diversity 0.0133 -0.0114 -0.0162 0.129 0.146 0.0131
(0.118) (0.120) (0.134) (0.164) (0.164) (0.177)

In_network_size 0.0944™  0.0946™ 0.0906 -0.0715 -0.0738 -0.202"
(0.0300) (0.0304) (0.0567) (0.0427)  (0.0425) (0.0896)

In_expdiversity_In_netsize 0.00346 0.101
(0.0417) (0.0638)

In_claims 0.411" 0.411" 0.405™ 0.405™ 0.405™ -0.468™ -0.468™ -0.465™ -0.464™ -0.460™
(0.0659 (0.0658) (0.0657) (0.0657) (0.0657) (0.0851) (0.0852) (0.0853) (0.0854) (0.0853)

In_patent_references 0.0379 0.0319 -0.0649 -0.0600 -0.0590 0.000760 -0.0585 0.0752 0.0104 0.0419
(0.0434) (0.0649) (0.0579) (0.0712) (0.0728) (0.0580) (0.0994) (0.0725) (0.108) (0.109)

In_nonpatent_references -0.131 -0.128 -0.0642 -0.0664  -0.0679 0.447" 0.473" 0.410" 0.439" 0.404"
(0.141) (0.143) (0.143) (0.145) (0.145) (0.177) (0.181) (0.178) (0.182) (0.183)

In_average_experience 0.0288 0.0285 0.0238 0.0240 0.0239 -0.0837 -0.0860 -0.0819 -0.0844 -0.0895
(0.0623) (0.0623) (0.0625) (0.0625) (0.0627) (0.0693) (0.0691) (0.0695) (0.0693) (0.0694)

In_joint_experience 0.0819" 0.0822" 0.0802" 0.0799" 0.0799" -0.0671 -0.0615 -0.0627 -0.0562 -0.0609
(0.0344) (0.0344) (0.0345) (0.0345) (0.0346) (0.0468) (0.0475) (0.0467) (0.0474) (0.0476)

Year fixed effects Included Included Included Included Included Included Included Included Included Included
Technology fixed effects Included Included Included Included Included Included Included Included Included Included
Chi square test 207.120 207.416 211.992 212.489 213.213 302.898 307.966 304.643 310.757  309.390
Log-Likelihood -2972.309 -2972.301 -2966.557 -2966.550 -2966.547 -1717.433 -1717.045 -1715789 -1715.295 -1713.626

ok

Robust standard errors for twailed tests clustered by the first inventosignificant at 10%;" significant at 5%:™ significant at 1%.
~ The number of observations is been reduced by a randomiyn gexeentagdigure.
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Table 2A Regressions of Experience Diversity and Network Size as Potenfiddderators using the USPTO sample

Dependent variable:
Regression model:

1)

Experience_diversity
Negative binomial

)

Network_size
Negative binomial

3)

Experience_diversity
Negative binomial

(4)

Network_size
Negative binomial

(%)

Experience_diversity
Negative binomial

(6)

Network_siz
Negative binomial

Team 0.607™ 2.104™ 0.673" 2.117" 0.665™ 2.160™
(0.0501) (0.149) (0.0529) (0.155) (0.0341) (0.111)
In_claims 0.0345 -0.0402 0.0340 -0.0392 -0.00424 0.142"
(0.0241) (0.0703) (0.0241) (0.0700) (0.0147) (0.0455)
In_average_experience 0.556" 1.415" 0.541" 1.413" 0.636™ 1.661"
(0.0209) (0.0549) (0.0208) (0.0547) (0.0184) (0.0436)
In_joint_experiene -0.231™ -1.025™ -0.235™ -1.028™ -0.284™ -1.158™
(0.0380) (0.143) (0.0370) (0.142) (0.0316) (0.113)
In_patent_references 0.125" 0.125* 0.117" 0.127 0.0555" 0.0784
(0.0250) (0.0531) (0.0244) (0.0537) (0.0163) (0.0415)
In_nonpatat_references -0.0496" -0.0307 -0.0360" -0.0283 -0.0724" 0.0144
(0.0143) (0.0354) (0.0141) (0.0358) (0.0112) (0.0254)
Inverse Mills' ratio 0.386™ 0.0600
(0.0974) (0.262)
Year fixed effects Included Included Included Included Included Included
Zf?g?tr;ology fixed Included Included Included Included Included Included
Chi square test 1681.093 1350.932 1742.482 1352.244 3023.134 2765.857
Log-Likelihood -2779.427 -6952.866 -2770.247 -6952.822 -8847.910 -19156.528
Observations 1,910 1,910 1,910 1,910 5,077 5,077

o

Robust standard errors for twailed tests clustered by the first inventosignificant at 10%;" significant at 5%:™ significant at 1%.
Estimates of Models 5 and 6 are obtained using the full sample of USPTQdgratgats while estimates of Modelgl Lising the subset of patents for which we have information

on the R&D project.
 The number of observations is been reduced by a randomly drawn percentage figure.
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