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Abstract
Since patent data became accessible in the 1980s, we have known that research using this data?while providing
tremendous opportunities?rests on important assumptions about how patents are actually generated by firms. It is well
known that firm-level selection processes shape the likelihood that firms decide to patent or not an invention. What is
unknown is to what extent these processes leave the results of work using patent data at risk of being distorted by
sample selection bias. To understand the magnitude of this bias, we replicate two important prior studies using data
from a novel, proprietary dataset, which contains more than 35,000 invention disclosures made by inventors within a
single firm, only some of which went on to be patented. We find strong indications for the presence of significant
selection bias in patent studies in examining the variance of creative outcome distributions and the impact of past
experience in subsequent inventions. We highlight what the nature of this bias may mean for our current body of
knowledge, and provide suggestions of how this issue should be addressed in future research.Jelcodes:O30,O32



LIFTING THE VEIL ON PATENTS AND INVENTIONS  

 

ABSTRACT 

Since patent data became accessible in the 1980s, we have known that research using 

this data—while providing tremendous opportunities—rests on important assumptions about 

how patents are actually generated by firms. It is well known that firm-level selection 

processes shape the likelihood that firms decide to patent or not an invention. What is 

unknown is to what extent these processes leave the results of work using patent data at risk 

of being distorted by sample selection bias. To understand the magnitude of this bias, we 

replicate two important prior studies using data from a novel, proprietary dataset, which 

contains more than 35,000 invention disclosures made by inventors within a single firm, only 

some of which went on to be patented. We find strong indications for the presence of 

significant selection bias in patent studies in examining the variance of creative outcome 

distributions and the impact of past experience in subsequent inventions. We highlight what 

the nature of this bias may mean for our current body of knowledge, and provide suggestions 

of how this issue should be addressed in future research. 
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INTRODUCTION  

In a recent paper, Gittelman (2008) states that to assess the value of patents as a useful 

indicator of innovative outputs of individuals and firms, one needs to gain a better 

understanding of the context surrounding firms’ and inventors’ decisions to use patents as a 

protection mechanism. In her words: “If we do not understand the institutional, 

organizational, and strategic context in which patents are created, we risk misusing the data, 

misinterpreting our results and in many cases attributing causality to covariance” (p. 21). 

Thus, only if we know that patent data is correctly interpreted can we believe in the validity 

of studies using patent data. Crucially, patent data, and its use as an indicator of innovative 

activity, suffers from an important limitation: selection bias—an issue that has been 

acknowledged for a long time (e.g., Griliches, 1984), but has not yet been comprehensively 

addressed. Simply put, we know that not all inventions are patented, but we use patent data as 

a reasonable proxy for invention itself.  

Existing work has attempted to quantify and ameliorate these shortcomings by 

drawing on the information contained in patents. For example, prior work has demonstrated 

that there are significant differences between firms operating in complex-product industries, 

such as computers, semiconductors, and telecommunications, where hundreds of patents are 

needed to protect the IP contained in a single product, and those in discrete-product 

industries, such as pharmaceuticals and chemicals, where a smaller number of patents protect 

the IP embedded in a single product (Hall & Ziedonis, 2001). These contributions have 

enriched our understanding of the differences in the propensity to patent and in patenting 

practices between industries, which have also been addressed by work using survey-based 

evidence (Arundel & Kabla, 1998; Cohen et al., 2000) and by historians of technology, using 

databases of innovations (Moser, 2005, 2012). 

At the same time, our knowledge of how patent applications are decided upon, and 

 2  



then generated, inside organizations, remains relatively sparse. Notable survey-based work on 

individual inventors aside (e.g., Giuri et al., 2007), we know surprisingly little about what is 

really going on inside organizations before the patent application. This is particularly crucial 

because this work may challenge some of the data interpretations brought forward by 

scholars using patents. For example, co-patenting has frequently been proposed as a measure 

of inter-organization collaboration. Yet, in the PATVAL survey of inventors, significant 

collaboration with other organizations was reported in about 15% of cases, yet co-patenting 

only in 3% (Giuri et al., 2007). Thus, it is vital that we improve our understanding of what is 

going on inside organizations to be able to better sense the extent to which our current body 

of patent-based research is valid. This richer understanding will help us ensure such data 

provides a strong foundation for building theories and for advising practicing managers about 

the nature of invention and innovation.  

Accordingly, we present empirical evidence analyzing and quantifying the magnitude 

of the selection bias that is characteristic of patent data (Jaffe & Trajtenberg, 2002), and that, 

if not appropriately accounted for, might significantly bias the results of studies based on 

patent data (Gittelman, 2008). Specifically, to assess the extent of this bias we exploit a 

unique dataset of all invention disclosures made by the employees of a company operating in 

a complex-product industry1. This dataset contains information on inventions which did not 

pass the novelty step, those that were novel but were not considered useful by the firm; and 

those that were eventually submitted to a patent office as a patent application.  

Therefore, this dataset allows us to assess whether, and to what degree, selection bias 

may exist in patent data studies. Specifically, the way in which we will assess the presence of 

selection bias and the impact that this might have on the statistical inference drawn from 

1
 To help mask the identity of our industrial partner, we do not report the sample period to which our patents and 

inventions data relate to and the exact number of inventions developed by this organization. Further, we report 
the total number of the firm’s inventions and patents after reducing it by a random percentage value, while using 
the full population in our analysis.  
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patent based studies is by replicating two studies examining the sources of technological 

breakthroughs using our dataset: one by Singh and Fleming (2010) on the impact of 

collaboration on the variance of creative outcome distributions and the other by Audia and 

Goncalo (2007) the impact of inventors’ past success in their future creativity performance. 

To do so, we will first estimate the models presented in these two studies using only the 

subset of inventions in our sample which have been granted a patent by the US Patent Office 

(USPTO). This first step aims to assess whether the findings obtained in these studies hold 

for the sample of patents granted to our firm. Second, we will estimate the same models 

controlling for selection bias derived from the inability of prior work to observe non-patented 

inventions.  

Our results suggest that selection bias does matter. In short, we show how selection 

bias affects the impact of some important drivers of the heterogeneity of patented inventions. 

In particular, this bias leads to an overestimation of the likelihood of inventor teams 

generating low quality innovative outcomes, and of the influence of an inventor’s prior 

innovative success on both the likelihood of patenting and the number of explorative ideas. 

However, we do not find evidence of selection bias in models explaining high quality patents. 

In our conclusions, we explore the implications of these findings for current research and 

suggestion potential corrective measures to help ensure more valid patent work in the future. 

  

BACKGROUND  

There is little doubt about the value of patent data; it has been essential to the progress 

of the field of innovation studies over the past 30 years. Given the ease at which it can be 

attained, it is unsurprising to find more than 17,000 papers when simply searching for “patent 

data” and “innovation” on Google Scholar. In recent years, there has been a surge of studies 

drawing on the NBER database and other online sources to understand invention and 
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innovation through the window of patenting behavior. Indeed, these studies using patent data 

have become the cornerstone of our understanding of how firms can support innovation. For 

example, the most cited paper in Administrative Science Quarterly on innovation since 2000 

is the Ahuja (2000) study of collaboration and patenting. Over time, these patent studies have 

used larger datasets and increasingly more complex analytical approaches to examine the 

information contained in patents. They have also increasingly been used to link patents to a 

range of other managerial choices and behaviors, helping to unlock a wide range of insights 

about what firms know and can do.  

At the same time, we have always known that patent data is far from perfect. When its 

computerization around the beginning of the 1980s sparked huge interest (see e.g., Griliches, 

1984 for an overview), researchers were clear in stating potential issues of selectivity or 

differences between R&D, patenting, and innovation—in fact, those were some of the most 

crucial questions tackled. In addition, these early authors pointed out numerous opportunities 

for research on a never-before-attainable large-scale dataset, in whose creation and 

refinement they were eventually instrumental (Griliches, 1984; Hall et al., 2002). 

Since then, although considerable progress has been made in innovation studies and 

related fields thanks to patent studies, the problems that come with using (exclusively) this 

data have been relegated to a few symbolic cites to those early works. In some respects, 

patent data has tended to increasingly be ‘reified’, treated as if it was an unambiguous, direct 

measure for invention and innovation. The reification of patent data may sow confusion 

between these imperfect measures and the reality of innovation itself. In doing so, there is a 

danger that researchers fall into what Alfred North Whitehead called the ‘fallacy of 

misplaced correctness’ (Whitehead, 1925, p. 51). In the following, we focus one aspect for 

why this approach may be problematic: selection bias. 

Selection Bias: Issues with Assessing the Quality of Inventions 
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Although scholars have been able to considerably increase our understanding of the 

institutional, technological, and legal contexts that shape firms’ strategic reasons for 

patenting, we still know relatively little about what affects the organization’s decision to 

patent an invention. In particular, we do not know how the selection process inside 

organizations concerning the decision to patent an invention affects any statistical inference 

drawn from studies using patent data. First, not all inventions are patentable due to explicit 

legal exclusion. Second, not all inventions are patented because firms may decide to protect 

their innovations by alternative appropriability methods, for example by keeping the 

invention secret. Third, and most importantly, many inventions are not patented because they 

do not pass an (internal-defined) novelty step and/or are not deemed useful to the inventor or 

the firm. As a result, when using patent data we are only able to observe a reduced sample of 

inventions. If the main purpose of a study is to examine the inventive activity of either an 

individual or a firm, then patent data suffer from an important form of selection bias. 

As pointed out by Gittelman (2008), the presence of selection bias will  affect in 

particular those studies which examine the quality of inventions as the researcher will be 

dealing with a significant level of unobserved heterogeneity. It might be of pressing concern 

when analyzing the variance in innovative outcomes (Girotra et al., 2010; Singh & Fleming, 

2010; Taylor & Greve, 2006), as the researcher may be unable to observe the low end of the 

quality distribution. At the same time, it will also affect those studies which examine how 

inventors’ past experience shapes their innovative performance as less successful events are 

not taken into account (Audia & Goncalo, 2007; Conti et al., 2014)—such information would 

need to be gathered through additional sources different from patent data (Giuri et al., 2007). 

Finally, firms’ or individuals’ propensity to patent cannot be reliably observed from public 

data alone (de Rassenfosse & van Pottelsberghe de la Potterie, 2009; Fontana et al., 2013). 

Although using past patent experience might be a useful proxy for inventor experience, it is 
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an imperfect one, as it assumes a close match between the number of inventions and patents 

of an individual. It could be that some individuals are prolific inventors, but patent only 

rarely due to their preference for quality and/or they lack of resources to pay the costs of 

patenting. There may also be individuals who patent all their inventions, regardless of their 

quality, simply because they have additional resources to funding their patenting efforts. 

More formally, based on the exposition in Stolzenberg and Relles (1997), suppose that 

ଵܻ is the dependent variable and ଶܻ a binary indicator for whether or not the invention is 

patented. ܻଵ is only observed for those inventions which have been patented (selected cases) 

while is missing for other cases (censored cases). The outcome regression model with only 

one independent variable can then be written as 

ଵܻ = ଴ߚ + ଵߚܺ +  (1)         ߝߪ

where ܺ  is the independent variable explaining the outcome variable ଵܻ, and ߝߪ is the 

regression error terms, where ߪ is a scalar and ߝ is ∼Normal(0,1).  

The selection equation for the same data can then be defined as: 

ଶܻ = ࢆߙ +  (2)        ߜ

where Z is a vector of independent variables which explain the likelihood of patenting 

an invention and ߜ is the error term which is ∼Normal(0,1).  

ଵܻ is observed only if ܻଶ is greater than T (the selection threshold). For a given value of 

Z, the probability of selection depends on the value of T, α, and δ. If α is equal to zero, then 

selection is random and, as a result, the sample used to estimate equation 1 is smaller. 

However if the selection is non-random, by estimating equation 1 one would introduce a bias 

in the coefficient estimate of X. In particular, Heckman (1976) derived the conditional 

expectation of ܻଵ given that ଵܻ is observed, as:  

E( ଵܻ| ଶܻ > ܶ) = ଴ߚ + ଵߚܺ + ܶ)ߣఌఋߩߪ െ (ࢆߙ     (3) 

Where ߩఌఋ is the correlation between ߝ and ߜ, and ߣ is the inverse of the Mills ’ Ratio 
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which is equal: ߣ(ܶ െ (ࢆߙ = ߶(ܶ െ ܶ)1െȰ]/(ࢆߙ െ  with ߶(ή) and Ȱ(ή) being the [(ࢆߙ

standard normal probability density and standard normal cumulative density functions. 

Therefore if selection is random and ߩߪఌఋ = 0, then ߚଵ can be consistently estimated using 

the sample of patents. However if selection in not random and ߩߪఌఋ ് 0, estimating equation 

(1) without including the inverse Mills ’ ratio will produce biased estimates because the model 

will suffer from omitted variable bias.  

In the presence of selection, equation 3 can be estimated using the Heckman sample 

selection model, in which the estimate of the inverse Mills’ ratio from a probit regression 

explaining the likelihood of an invention being protected with a patent is then used in the 

model explaining invention quality. While ߚଵ is identified in the Heckman procedure even if ࢆ = ܺ, due to the nonlinearity of the inverse Mills ’ ratio, for more precise estimates of 

coefficients in ߚଵ, it is useful to include in ࢆ exogenous variables which affect the likelihood 

of an invention being protected with a patent but do not affect the outcome variable ଵܻ. 
 

DATA AND METHODS  

Sample 

In this study, we exploit a unique dataset of invention disclosures made by all 

employees working for a large multinational company operating in a complex-product 

industry which we will call Venus for reasons of confidentiality. A total of 35,144 inventions 

were submitted by inventors during this sample period. As is common in many large 

technology-based companies, all employees in Venus, whether working with external parties 

or not, are requested to document their inventions and to store this information in an IT 

system so that these can be subsequently evaluated by a team of patent engineers and experts. 

The main objective of the evaluation team is to decide whether the invention contains a 

novelty step and whether it is useful to the firm either by potentially being incorporated into a 
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product or service or as a means of production or service provision. The evaluation process 

can result in four different outcomes: 

1. The invention is not novel or does not contain an inventive step; therefore Venus does 

not acquire the rights to this invention—the invention is thus “given” to the inventor. 

2. The invention contains an inventive step but is not currently considered to be useful 

for the company, so Venus decides not to seek patent protection but keeps the rights 

to this invention as it might be patented in the future. 

3. The invention has been judged to be novel and useful and Venus proceeds with 

applying for patent protection in one or several patent offices. 

4. The invention is considered novel and useful but Venus decides to keep the invention 

secret. 

Almost half of the inventions in our sample are considered as not new or obvious (category 1) 

and are thus of low quality from the perspective of the firm. Categories 2 and 4 are interesting 

as they might represent high quality inventions which the company decides not to protect 

with a patent. Thus, if there is a selection bias in current studies examining valuable 

innovations, then this might also stem from these types of inventions. However, only a very 

small proportion of inventions are kept secret in Venus (less than 1%), but almost 10% of 

inventions fall under category 2 above, i.e. they do contain an inventive step but they are not 

yet deemed useful for Venus. Eventually, only 15% of these inventions are patented by the 

firm, so the vast majority of these inventions, although potentially of high quality in terms of 

novelty, will never appear in patent databases. The remaining inventions (category 3) are 

patented.  

Data Preparation 

To be able to test for the presence of a selection bias in the studies, we decided to 

replicate, we adopt a two-step approach à la Heckman described above where first we 
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estimate the probability that an invention has been protected with a granted patent using the 

entire sample of invention disclosures and then we estimate the model explaining the main 

outcome variable using only the subset of inventions which have been patented taking into 

account the estimated probability that an invention is protected with a granted patent, as 

captured by the inverse Mills ’ ratio. As mentioned above, to precisely estimate these two 

models, however, we need a variable which explains the selection process, i.e. why the 

evaluation team has decided to patent the invention, but which does not influence the 

outcome variable used in the outcome regression model.  

To better understand the evaluation process, we carried out 20 exploratory interviews 

with inventors, patent engineers, experts, and managers of legal and IP departments, as well 

as taking part in numerous formal and informal meetings. Further, one of the authors spent 40 

days observing a team of patent engineers dealing with the evaluation of new invention 

disclosures and the maintenance of Venus’ patent portfolios.  

Through these interviews and observations, we found out that one of the main reasons 

explaining why novel inventions are not considered useful and thus are not patented is 

because they are originated from outside a formal project. As in many other organizations, 

inventors in Venus work on pet or bootleg projects (Criscuolo et al., 2014), i.e. projects 

which are non-programmed innovation efforts and not officially authorized by the 

organization. Engagement in these activities can often result in inventions which are then 

disclosed to and evaluated by the organization. Although novel, these inventions do not 

always fit with the main strategic and technological priorities of the firm and may not be 

easily or directly incorporated in the company products. As a result, inventions resulting from 

creative efforts outside formal projects are often novel, but not useful (category 2).  

Therefore, to improve identification in the two-equation system, we used a dummy 

variable which is equal to one if the invention under evaluation originated from an official 
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R&D project. Unfortunately, this information is available only for a subset (28%) of our 

invention disclosures, which resulted in 1,910 USPTO granted patents. For the first-step 

selection model, we further control for the technology area of the invention using Venus’s 

internal technology classification. Each invention disclosure is classified by the responsible 

patent engineer in one or multiple 4-digit technology classes. 

 

ANALYSIS  

To assess the extent of the selection bias introduced by the unobservability of 

inventions which are not patented, we replicated the results of two recent studies that used 

patent data to examine what drives the emergence of technological breakthroughs by focusing 

on the impact of collaboration among teams of inventors and of past creative outcomes.  

The first study, by Singh and Fleming (2010), focuses on team size and the resulting 

collaboration among inventors as a source of inventions with extremely high quality, and also 

assesses the effect of this factor in explaining the occurrence of inventions of extremely low 

quality. Their main argument is that teams of inventors are more likely to discover 

breakthroughs because of their greater diversity of knowledge which in turn leads to higher 

combinatorial opportunity. But teams of inventors are also less likely to produce low quality 

inventions because of the greater and more rigorous process of ideas selection. As the main 

mechanism through which team size affects the generation of technological breakthrough is 

the diversity of the team background, the authors postulate that the technological experience 

of the team of inventors and the size of their network of indirect collaborators mediate the 

quality of their innovative efforts. One of key features of this study is that it tries to “examine 

the entire distribution of creative outcomes” (p. 41), but by using patent data it cannot fully 

capture the entire distribution as low quality inventions, those that are not patented, are 

missing from the lower tail of the distribution. In other words, the distribution must be left 
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truncated.2 

In particular, the sample selection problem which might bias the estimates of this study 

can be formally described as follows. In the outcome regression model (equation 1) ܻଵ is 

invention quality and X is team affiliation and in the selection equation ଶܻ (equation 2) is the 

likelihood of patenting an invention. Note that under the assumptions made by these authors ߙଵ and ߚଵ expected to be positive. Thus we can rewrite equations 1 and 2 as:  ܳݕݐ݈݅ܽݑ = ଴ߚ + ଵܶ݁ܽ݉ߚ + ݃݊݅ݐ݊݁ݐܽܲ ߝߪ = ଵܶ݁ܽ݉ߙ +  ߜ

If it is true, as it is often assumed in literature, that unpatented inventions did not pass 

the threshold of novelty necessary to deserve to be patented, then the sample of selected cases 

is under-representing single inventor inventions and the coefficient of team affiliation will be 

biased downward. In other words, if we observe an invention by a single inventor among the 

patented inventions, there might be other reasons − captured in the error term δ − which 

could explain why this invention was patented which could also explain its quality. As a 

result the cov(Team,δ)<0 and the error terms δ and ߝߪ are likely be correlated meaning that 

also cov(Team, ߝߪ)<0. If we re-write the quality equation to include the error term from the 

selection equation we get: ܳݕݐ݈݅ܽݑ = ଴ߚ + ଵܶ݁ܽ݉ߚ + ଶδߚ +  ߝߪ
If we assume that ߚଶ is positive, then ignoring δ and attributing all its impact to the 

Team variable will have a negative effect on the magnitude of ߚଵ, i.e. ߚଵ will be downward 

biased. If, instead, we consider that not all novel inventions are patented (for example, some 

2
 Additionally, the variables for the size of the inventor’s networks of direct and indirect collaborators and their 

technological experience are likely to be measured with error if only patented inventions are considered. In 
results available on request from the authors, we compare the effects on the likelihood of producing high and 
low-quality patents of these variable when they are calculated using the subset of inventions which are patented 
versus the whole set of inventions. The results show that the effect of average experience on the likelihood of 
generating high-quality patents is significantly under-estimated, while the effects of both average and joint 
experience on the likelihood of generating low-quality patents is significantly over-estimated when only patent 
data is used to construct these variables. This implies that the measurement errors in these variables are ‘non-
classical’ and lead to biased and inconsistent estimates.  
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novel inventions may not help the company pursue its objectives), then the sample of selected 

cases is under-representing inventions discovered by team of inventors and the coefficient of 

team affiliation will also be biased downward.  

A similar problem affects the second study, by Audia and Goncalo (2007). In this 

paper, the authors focus on an inventor’s past experience in successful creative efforts as a 

driver for the subsequent generation of explorative ideas. Audia and Goncalo posit that 

inventors with a strong track record of producing inventions might be better able to develop 

more inventions because they become faster and more efficient at generating new ideas. 

However, past experience becomes an obstacle for the generation of explorative ideas 

because successful inventors tend to apply the same heuristics used in the past and to draw 

from familiar knowledge sets. The negative impact of past success on the development of 

divergent ideas is, however, moderated by the presence of other inventors involved in the 

creative efforts. By relying only on those creative ideas which were patented, this study is 

unable to fully measure an inventor’s past and current experience, as it disregards the creative 

endeavors which did not result in a patent. One could assume, as the authors do, that the 

selection is random (i.e. Į in equation 2 is equal to 0) and the only consequence is that one 

would estimate equation 1 with a smaller sample. However, this might not be true as there 

might be a relatively high level of unobserved heterogeneity at the inventor level in their 

ability to generate inventions which are then patented as well as in their ability to develop 

inventions which are divergent from past innovative efforts. In this case, it is difficult to 

predict the direction of the bias we will assume instead that we expect not to find any 

selection bias as predicted by Audia and Goncalo. 

Replicating Singh and Fleming’s study 

We start by reporting the results of our estimations of the Singh and Fleming’s models 

using the subset of USPTO patents for which we have information on whether the invention 
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is linked to an official project. Results for the sample of USPTO patents are included in the 

appendix (see Table A1). To enable the reader to compare our results to the ones reported in 

the Singh and Fleming’s paper, we have kept the same variable labels. The main independent 

and control variables were computed following the description provided in the paper and 

using only the USPTO patent applications which were granted. However, as our invention 

disclosures dataset uniquely identifies inventors, we included also the inventions and 

corresponding patents granted made by inventors residing outside the US.  

Regarding the dependent variable, to determine whether a patent is in the top 5% in 

terms of frequency of forward citations, we compared the citations received by the focal 

patent with those received by patents applied in the same year and in the same primary 3-digit 

IPC technology classification. To derive the citation frequency and the frequency 

distributions per year and technology class, we used citations made by patents applied for in 

all patent offices, rather than only within USPTO citations.3 Although our models use data 

from a more recent period, all the variables capturing different aspects of the team of 

inventors were derived using invention disclosures since Venus’ inception. We have, 

however, not used the data for this longer time period in our regressions as there are 

relatively few observations during this earlier period.  

Before reporting the estimation results, we looked at whether inventions by single 

inventors tend to be of lower quality than those with multiple inventors using the sample of 

35,144. More than half of the inventions in our sample are generated by individual inventors 

and 62% of these fall in our lowest quality category, which seems to confirm Singh and 

Fleming’s main expectation. As the number of inventors in the team increases, the proportion 

of inventions considered prior art decreases, while the number of patented inventions 

increases. However, we cannot observe a systematic trend as it seems that teams with more 

3  We have estimated models using the within-USPTO citation frequencies, but we decided not to report them 
here as the results were not consistent with the ones obtained by Fleming and Singh as the team size variable 
was not always significant.  
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than four inventors produce marginally more inventions of relatively lower quality. The 

proportion of novel but not useful inventions, however, does not change dramatically as the 

size of the team increases.  

Table 1 reports the summary statistics for the variables used in our main models. As in 

the sample used in the Singh and Fleming’s paper, the experience and network size variables 

display high skew with network size displaying a maximum value of over several hundred 

inventors and standard deviation of 63. The percentage of granted patents which received 

zero forward citations is equal to 9% in our sample, which is consistent we what found in the 

sample used by Singh and Fleming (7%). However, the proportion of patents in the top 5% of 

the distribution of forward citations is much higher in our sample (18%) than in the sample 

used by Singh and Fleming (5%). In Table 2, we report the correlation matrix among the 

variables used in the regressions.  

 

--- INSERT TABLES 1 and 2 HERE--- 

 

Table 3 contains the coefficient estimates of the main models of the Singh and 

Fleming’s paper (see their Table 6). We estimated also the negative binomial models which 

regress the two mediation variables (experience diversity and network size) and found that 

team’s size had a positive and significant impact in explaining both variables (see Tables 2A 

in the appendix). According to the estimates for Model 1, patents with more than one 

inventor are 11.3% more likely to be in the 95th percentile of the citations than patents with 

only one inventor. This effect is significantly smaller than what was found by Singh and 

Fleming (28%), but it is significant at the 1%-level. We also found that team affiliation 

affects the likelihood of poor outcome patents. The estimate of the team variable in Model 6 

indicates that patents granted to teams of inventors are 6% less likely to receive zero citations 
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than those granted to single inventors.4 Models 2-5 and Models 7-10 include the mediator 

variables experience diversity and network size and their interactions. In Model 2, we found 

that experience diversity, although significant, has the opposite sign than what predicted by 

Singh and Fleming. Network size is only significant and positive in Models 4 and 5. 

Therefore, we could not replicate the mediation effects of these two variables in our sample 

of breakthrough innovations. Similarly, experience diversity is not significant in Model 2 and 

network size is only significant and negative in Model 10.  

 

--- INSERT TABLE 3 HERE --- 

   

In Table 4, we report the estimates of the same models but controlling for the possible 

selection bias introduced by not including inventions which were not patented. To this end, 

we first estimated a probit model to predict the likelihood that an invention was protected 

with a patent granted by the USPTO using the entire sample of inventions for which we have 

information on whether the invention was stemming from an R&D project or not. We 

included as explanatory variables in this first stage model a dummy variable equal to one if 

the invention was generated in an R&D project, another dummy variable equal to one if the 

invention was the result of collaboration among multiple inventors, the logarithm 

transformation of the average number of previous inventions for the team of inventors, the 

logarithm transformation of the number of past inventions invented by the same team, and 15 

one-digit technology class dummies. It is interesting to report that the coefficient of the R&D 

project variable was positive and significant at one percent confirming our expectations. 

From this first stage model, we derived the inverse Mills’  ratio which we included in the 

second stage logit models reported in Table 4.5  

4  Similar results in terms of significance of the coefficient estimates are found for the larger sample of patents 
reported in Table 1A in the appendix. However effect sizes are much smaller: 5.6% and 4.1% for high and 
poor quality outcomes, respectively.  

5
  We also estimated the same models using the heckprob command in STATA which fits maximum-likelihood 

probit models with sample selection and produces the correct standard errors that control for the two-step 
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--- INSERT TABLE 4 HERE --- 

 

The inverse Mills ’ ratio is never significant in Models 1-5, but it is significant in 

Models 6-10 of Table 4. This suggests that the selection bias affects only the estimations of 

the poor quality outcomes and not for the high quality ones. This implies that by not 

including all the inventions generated by scientists and engineers in Venus, researchers would 

not underestimate the effect of team affiliation on the likelihood of generating technology 

breakthroughs, but they will overestimate the effect of team affiliation on the likelihood of 

generating poor innovative outcomes. Indeed, the effect of team affiliation is now equal to 

3.7% according to the estimates of Model 6, instead of 6% and this difference is statistically 

significant at the 1% level.  

However, the only way to correctly estimate the real effect of team affiliation on the 

likelihood of generating poor innovative outcomes is by considering all inventions and 

estimating a logit model with a dependent variable equal to 1 if the invention was not 

patented (Notpat), i.e. it was neither novel nor useful. Similarly, one could estimate the 

likelihood of an invention being prior art (Priorart), i.e. not novel, or of an invention being 

novel but not useful (Notuseful). These regressions are reported in Table 5. Being part of a 

team has a negative and significant effect on the likelihood of an invention not being patented 

and also of an invention not being novel. However, it has a positive and significant impact on 

the likelihood of producing an invention which is novel but not useful (see Model 9), which 

suggests that this type of invention might be more similar to patented inventions than those in 

the other categories. The effect sizes are quite large, especially if compared with what 

obtained by Singh and Fleming. According to the coefficient estimates of Model 4, inventors 

working in a team are 22.8% less likely to generate inventions which are patented than lone 

estimation approach. However, we decided to report the results obtained by including the inverse Mills’ ratio 
in the second stage logit model to allow comparison with Fleming and Singh’s paper.  
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inventors. The mediation effects of network size appear to have the expected sign and 

significance, but the one for experience diversity goes in the opposite direction than what 

found by Singh and Fleming for the non-patenting and prior art outcomes.  

 

--- INSERT TABLE 5 HERE --- 

 
Replicating Audia and Goncalo’s study 

While Singh and Fleming clearly stated that the regressions were estimated using the 

patent as unit of analysis, in the Audia and Goncalo paper, it was unclear whether this was 

the case. As the authors state that “when a patent has multiple inventors, we attribute it to 

each inventor listed as co-author” (p. 7), we have assumed that the unit of analysis is a patent-

inventor dyad. Also, the authors do not explicitly state whether they use patent applications or 

granted patents. As the source of the data is the USPTO, we have assumed that the authors 

have used granted patents.  

One of key variables in this study is the past success of an individual inventor in 

his/her creative endeavor. Audia and Goncalo assume that inventors will compare their past 

performance with that of other inventors specialized in the same technology area. As a result, 

they measure this variable by calculating the number of patents developed by each inventor in 

the preceding two years minus the average number of patents generated by other inventors in 

the same technology area during the same period. We followed a similar procedure to 

compute this variable using our sample of inventors. First, we extracted all patents granted to 

each inventor since Venus’s inception and identified the main area of specialization as the 

IPC technology class with the highest share of patents. Second, we derived the relative 

success measure for each inventor by applying Audia and Goncalo’s formula. As we have 

information on all inventions developed by an individual, we calculated the success measure 

as well as all the other measures both using invention data as well as using the sample of 
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those patents granted at the USPTO. We also controlled for when the inventor first received a 

granted patent from the USPTO by deriving three cohort dummy variables: one for inventors 

who obtained their first patent from this patent office during the early years of operation of 

Venus (Cohort with first patent first period), one for inventors who received their first patent 

in the more recent years, and one for the inventors who were granted their first patent in 

between these two periods (Cohort with first patent second period). When we estimate our 

models using the sample of inventions we computed these cohort dummy variables using the 

date of an inventor first invention.  

Before presenting our results, we wanted to evaluate whether it is plausible that the 

selection problem - although present - is random. We derived the proportion of patented 

inventions over the total number of inventions generated by all the inventors in our sample 

with more than two inventions. We did not take into account at which patent office the 

invention was protected and we considered patent applications instead of only granted 

patents. As shown in Figure 1, there is a lot of variation across inventors in their proportion 

of patented inventions, which suggests that there might a systematic bias introduced when 

one only considered the subset of patented inventions. 

--- INSERT FIGURE 1 HERE --- 

Table 6 presents the summary statistics of the variables used to replicate Audia and 

Goncalo’s paper. It is worth noting that the maximum number of subclasses and new 

subclasses in our sample is smaller than what was found in the sample analyzed by Audia and 

Goncalo. This can be the result of our use primary and secondary IPC classification instead of 

the USPTO subclasses. The success measure derived using our sample of USPTO granted 

patents displays a wider range (min=-2, max=17.5) than the one used by Audia and Goncalo 

(min=-1.3 and max=0.995). This may be due to the fact that our sample of inventors seems to 

be more prolific than the ones in their sample: the yearly average number of patents in our 
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sample varies between 1 and 1.78; and among our inventors there are some very productive 

ones: 2% of inventors are granted more than five patents a year. 

 

--- INSERT TABLE 6 HERE --- 

 

In Table 7, we report the coefficients of the Cox proportional hazard model estimations. 

Due to the high number of inventors in our sample, we could not estimate the inventor-

specific fixed effect model. Models 1 and 2 are estimated using the sample of patents for 

which we have information on whether the invention was generated within the scope of a 

R&D project or not. Model 1 does not produce consistent estimates for the control variables 

to the ones reported in Table 2 of Audia and Goncalo’s paper. In particular the inventor 

proportion of solo-inventor’s patents is not significant and the cumulative inventor patents 

variable is negative and significant. Model 2, however, confirms what is predicted and found 

by Audia and Goncalo, namely that the prior success of an inventor has a positive impact on 

the likelihood of patenting; the magnitude of this effect is relatively consistent with that 

found in their study. Using the minimum and maximum value of their success variable 

(min=-1.31, max= 0.99), we computed that the least successful inventors are 19% less likely 

(instead of 31%) to patent than the most successful inventors.  

Models 3 and 4 include the inverse Mills ’ ratio which was generated from a first-stage 

probit model where we predicted the likelihood of an invention being granted a patent from 

the USPTO. As explanatory variables in this model, we included whether the invention was 

linked to an R&D project or not, whether it was generated by a team of inventors, and the 

cumulative number of inventions that the inventors have developed so far. Finally, we control 

for technology fixed-effects by including 15 one-digit technology class dummies. The inverse 

Mills’ ratio is negative and significant in both Models suggesting that the estimates in Models 

1 and 2 are affected by a selection bias. However, the inclusion of the inverse Mills’ ratio 

does not seem to affect substantially the magnitude of the coefficient estimate for the 
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inventor’s success variable. We do notice a substantial change in the effect of this variable 

when we consider all inventions that an inventor has generated and not only those protected 

by a USPTO granted patent. These results are reported in Models 5 and 6 of Table 7. Using 

the estimates of Model 6, we calculated that the difference in the likelihood of generating an 

invention between the least and most successful inventors in Audia and Goncalo’s study is 

8%, i.e. more than three times smaller than what was found in their study and more than two 

times smaller than what was found in Model 2.6 Thus, by measuring the success of an 

inventor using only the number of granted patents, the researcher may be overestimating the 

impact of past success on the likelihood of generating new ideas.  

 

--- INSERT TABLE 7 HERE --- 

 

In Table 8, we report the estimates of the random-effects Poisson models predicting the 

number of new subclasses (3-digit IPC technology classes) in which a patent is classified 

which are new to the inventor. Model 1 shows results consistent to the ones obtained by 

Audia and Goncalo: the proportion of sole-inventor patents has a negative and significant 

impact on the probability that an inventor generates a patent in new technology areas, while 

the number of IPC classes in which a patent is classified increases this probability. Model 2 

includes the variable capturing the innovative performance of the focal inventor which is 

negative and significant, confirming what was found by Audia and Goncalo and providing 

support for their Hypothesis 2, which stated that inventors who have been successful in the 

past are less likely to generate divergent ideas. To compare the magnitude of our coefficient 

estimate with that found by Audia and Goncalo, we calculate the difference in the probability 

of developing patents in new subclasses between the most (inventor’s success=0.99) and least 

(inventor’s success=-1.131) successful inventors in their sample. According to the coefficient 

6 We could not test whether these two coefficients are statistically different because the seemingly unrelated 
estimation procedure cannot be implemented with a Cox hazard model. 
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estimate in Model 2, this difference is equal to -64%, which corresponds to more than double 

the size of the effect found by Audia and Goncalo. Model 3 includes the interaction term 

between the inventor’s success and the proportion of sole-inventor patents. This interaction 

effect is positive and significant, instead of being negative and significant. Thus, we do not 

find support for their Hypothesis 3. 

Of most interest are the results reported in Models 4-6 where we introduce the inverse 

Mills’ ratio to control for the selection bias which could be present in the previous models 

due to the fact that we only observe inventions which have been protected with a granted 

patent. The inverse Mills’ ratio is always positive and significant in these models suggesting 

that the estimates of the previous models might be biased. To assess the extent of this bias we 

calculate the difference between the most and least successful inventors using the coefficient 

estimate obtained in Model 5 and found that this difference is now -65.8%. Thus, although 

there is a selection bias, this does not seem to affect the impact of the main independent 

variable. The last three models in Table 8 reports the results obtained by using the entire 

sample of inventions. The sign and significance of the coefficients are consistent to what 

found using the subset of patented inventions, however the magnitude of the coefficient for 

the success variable produces a difference in the probability of generating divergent ideas 

between the most and least success inventors significantly smaller than what found in Model 

2 (-12% vs. -64%).7 Thus, also in this case, by taking into consideration all innovative efforts 

of an individual and not only those leading to a granted patent, we found that a successful 

track record does affect the ability of an inventor to produce ideas which deviate from the 

past, but this impact is relatively small.  

 

--- INSERT TABLE 8 HERE --- 

 

7
 We could not test whether these two coefficients are statistically different because the seemingly unrelated 

estimation procedure cannot be implemented with the random effects poisson model.  
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DISCUSSION 

In this study, we have tried to shed new light on the use and usefulness of patent data. 

In particular, by looking at what happens before a patent application is filed our goal was to 

understand whether the fact that some actions regularly occurring as part of the inventive 

process cannot be observed in patent data would introduce a significant bias in works 

building on patent data. To do so, we focused on the pivotal issue of selection bias and built 

on a company-internal dataset to replicate selected studies. 

While it is clear that working with the internal data of just one company limits the 

generalizability of our findings, they are an important first step in showing that the above 

problems do indeed exist. And to do so, valuable intra-company data is needed, which we 

present, to the best of our knowledge, at a quality and depth rarely seen before in the 

literature. In addition, the methods that we employed made clear that comparability indeed 

exists. For our replication studies focusing on selection, we always provided a “baseline” 

effect for our sample, and then focused on the changes that occurred when introducing the 

additional information we had available—and importantly, the baseline models always 

looked similar to the results of the original studies. In short, while our focus lies merely on 

providing some initial evidence on the potential magnitude of the problem we highlight, we 

would go as far as claim the values we uncover should not differ much from the general 

population of firms, and definitely not from those similar to Venus. 

In turn, these results indeed cast a shadow of doubt on some elements of the work 

building on patent data. First, focusing on potential selection issues, our study demonstrates 

that patent data is subject to significant left-side truncation, as many of the low-quality 

inventions are simply not observed. Although this has been commented upon previously, ours 

is the first study that we know of to actually demonstrate the scale of this selection bias. Our 

results suggest that patent-based studies of performance are liable to underestimate the 

 23  



amount of inventive failure and therefore effort made in large organizations and by inventors. 

As a result, the studies of inventive success may overplay the salience of many variables in 

shaping innovative success, as many of our expectations about the value of patents and the 

underpinning drivers of creative success are subject to a significant degree of systematic 

measurement error. This would suggest that authors give greater attention to the dangers of 

directly attributing some behaviors and experiences to positive creative outcomes, holding 

back from drawing strong inferences about causality with respect to the nature of invention 

from incomplete patent data. At the same time, though, we find some corroboration for some 

of the critical variables in recent work on patents, such as the effect of team affiliation of high 

quality inventions and the importance of prior experience on future inventive success.  

 

CONCLUSION 

There is an increasing understanding that many aspects of managerial and corporate 

behavior are subject to hard to observe selection processes (e.g., Berk, 1983; Kovács & 

Denrell, 2008). These selection processes may hide from researchers some of the key drivers 

of performance outcomes or lead researcher to suggest that some behaviors drive 

performance when they do not. This is because in management research, we usually only see 

the part of a population – the firms, individuals and inventions - that appears on public 

records and repositories. Failure, partial attempts, and incomplete efforts are often 

unrecorded, hidden away behind organizational walls or obscured by poor information.  

Patent data has always been known to be subject to sample selection. Yet, to date, few 

studies have attempted to account for this fact. Our study provides an attempt to grapple with 

this challenge. Our results raise a clear note of caution on the interpretation of this data. We 

urge our fellow researchers not to be lured by patent data’s availability and expected potency, 

but they instead should make substantial efforts at either focusing on studying research 
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questions that can be covered with patent data, or on complementing it with other sources of 

data to overcome the issues we have identified. To move the field forward in this spirit, we 

see several opportunities. 

First, patent-based work may benefit from purposefully limiting itself to those bits of 

the innovation process it can actually describe—those parts after the firm has made a decision 

to file an invention—and drop inferences about what might have happened before. For 

example, comparing the application-over-patent-granted rate as a proxy for organizational 

skill or innovative capability across firms may be misleading if one acknowledges that 

organizations’ selection decisions with regards to patenting inventions vary: of course, if a 

firm only files its best inventions, it will get more patents granted when compared to a firm 

that files pretty much everything. However, within-firm comparisons may still be appropriate. 

For example, a firm’s increase in patenting success following specific managerial decisions 

(given these do not affect the propensity to patent an invention) may allow to derive insights 

about their efficacy. At the same, one could also study factors that would change the 

propensity to patent (given these do not change the average quality of the firm’s inventions). 

Second, the most promising approach we see is the complementing of patent data with 

primary data collected from inventors or companies. While it may indeed be difficult and 

costly to attain such data, it is not impossible—for example, beyond our study, many 

examples exist where researchers attained access to a limited set of inventions, but were able 

to attain their complete history, including for example inventor surveys (Giuri et al., 2007) or 

the study of university inventors (Kotha et al., 2013).  

Patent data is and will remain a key tool for research on the innovation process, as it 

provides a powerful lens on the nature of the people and technologies that underpin change in 

the economic system. At the same time, research using this data needs to be tempered with a 

strong degree of modesty about what is and what is not observed. This acknowledgement 
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could also be a spur to capture new and related data and information on the innovation 

process.  
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TABLES AND FIGURES 

Figure 1 Distribution of the proportion of patented inventions by inventors in our sample 

 
 
Table 1 Summary statistics (N=1,910) 

 
Mean S.D. Min Max 

Cites_p95 0.182 0.386 0 1 
CitesEQ0 0.088 0.284 0 1 
Team 0.632 0.482 0 1 
Claims 26.094 17.516 1 330 
Patent_references 14.686 14.715 0 134 
Nonpatent_references 5.616 10.266 0 128 
Average_experience 7.413 9.126 0 85 
Joint_experience 1.025 1.457 0 18 
Experience_diversity 2.155 1.666 0 11 
Network_size 34.531 63.16 0 666 

 
 
 
Table 2 Correlation matrix among variables  

    1 2 3 4 5 6 7 8 9 
1 Cites_p95 

         2 CitesEQ0 -0.147 
        3 Team 0.109 -0.038 

       4 ln_claims 0.067 -0.058 0.109 
      5 ln_patent_references 0.004 -0.053 0.050 0.090 

     6 ln_nonpatent_references 0.018 -0.032 0.103 0.161 0.213 
    7 ln_average_experience 0.032 0.034 0.158 0.137 0.044 0.162 

   8 ln_joint_experience 0.079 -0.009 0.833 0.096 0.080 0.130 0.286 
  9 ln_experience_diversity -0.001 0.042 0.328 0.175 0.106 0.122 0.785 0.343 

 10 ln_network_size 0.070 0.000 0.341 0.131 0.063 0.148 0.634 0.317 0.604 
Correlations>|0.045| significant at 5% 
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Table 3 Regression Analyses of Extreme Outcomes upon Lone Invention  
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

  Cites_p95 Cites_p95 Cites_p95 Cites_p95 Cites_p95 CitesEQ0 CitesEQ0 CitesEQ0 CitesEQ0 CitesEQ0 

Regression Model Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic 

Team 0.911***  1.107***  0.795***  0.982***  0.939***  -0.832***  -0.943***  -0.743**  -0.856**  -0.788**  

 
(0.235) (0.247) (0.243) (0.254) (0.257) (0.308) (0.321) (0.328) (0.337) (0.343) 

ln_experience_diversity  -0.530**   -0.573***  -0.429*  0.284  0.319 0.0586 

 
 (0.211)  (0.211) (0.256)  (0.281)  (0.280) (0.341) 

ln_network_size   0.0684 0.0850* 0.170*   -0.0701 -0.0777 -0.266* 

 
  (0.0469) (0.0473) (0.0889)   (0.0737) (0.0736) (0.152) 

ln_expdiversity_ln_netsizeo     -0.0731     0.145 

 
    (0.0676)     (0.105) 

ln_claims 0.484***  0.495***  0.485***  0.497***  0.495***  -0.637***  -0.644***  -0.636***  -0.644***  -0.637***  

 (0.121) (0.119) (0.120) (0.118) (0.119) (0.152) (0.152) (0.152) (0.152) (0.152) 

ln_patent_references 0.169**  0.374***  0.0942 0.298**  0.273**  0.00261 -0.114 0.0763 -0.0466 0.0121 

 
(0.0718) (0.106) (0.0878) (0.116) (0.119) (0.0948) (0.156) (0.127) (0.171) (0.177) 

ln_nonpatent_references -0.363 -0.447**  -0.302 -0.379* -0.350 0.581* 0.634**  0.547* 0.602**  0.556* 

 
(0.221) (0.223) (0.220) (0.222) (0.223) (0.302) (0.306) (0.302) (0.305) (0.307) 

ln_average_experience -0.0799 -0.0456 -0.0879 -0.0514 -0.0465 -0.192 -0.208* -0.187 -0.203* -0.218* 

 
(0.112) (0.114) (0.112) (0.114) (0.114) (0.120) (0.121) (0.121) (0.121) (0.123) 

ln_joint_experience 0.0897 0.0787 0.0890 0.0769 0.0808 -0.150* -0.139* -0.146* -0.134 -0.152* 

 
(0.0631) (0.0622) (0.0635) (0.0628) (0.0633) (0.0848) (0.0845) (0.0843) (0.0840) (0.0829) 

Year fixed effects Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  

Technology fixed effects Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  

Chi square test 107.674 113.597 109.288 116.670 120.229 105.145 106.629 105.163 107.095 107.010 

Log-Likelihood -843.541 -840.098 -842.507 -838.545 -838.013 -513.661 -513.126 -513.074 -512.410 -511.202 

Observations 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910 
Robust standard errors for two-tailed tests clustered by the first inventor. * significant at 10%; **  significant at 5%; ***  significant at 1%.  
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Table 4 Regression Analyses of Extreme Outcomes upon Lone Invention accounting for selection bias  
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

  Cites_p95 Cites_p95 Cites_p95 Cites_p95 Cites_p95 CitesEQ0 CitesEQ0 CitesEQ0 CitesEQ0 CitesEQ0 

Regression Model Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic 

Team 0.995***  1.205***  0.880***  1.080***  1.037***  -0.516 -0.641**  -0.465 -0.587* -0.496 

 
(0.245) (0.254) (0.252) (0.261) (0.264) (0.314) (0.323) (0.330) (0.336) (0.344) 

ln_experience_diversity   -0.543***   -0.585***  -0.448*  0.300  0.320 -0.0261 

 
 (0.208)  (0.208) (0.253)  (0.269)  (0.269) (0.333) 

ln_network_size    0.0680 0.0847* 0.166*   -0.0388 -0.0466 -0.296**  

 
  (0.0469) (0.0473) (0.0888)   (0.0712) (0.0711) (0.150) 

ln_expdiversity X lnetsize     -0.0696     0.190* 

 
    (0.0675)     (0.101) 

ln_claims 0.485***  0.495***  0.486***  0.497***  0.495***  -0.528***  -0.537***  -0.527***  -0.536***  -0.529***  

 (0.121) (0.119) (0.120) (0.119) (0.119) (0.155) (0.156) (0.155) (0.156) (0.155) 

ln_patent_references 0.142* 0.350***  0.0684 0.274**  0.251**  0.0413 -0.0779 0.0824 -0.0368 0.0398 

 
(0.0736) (0.107) (0.0896) (0.118) (0.120) (0.0981) (0.150) (0.124) (0.162) (0.171) 

ln_nonpatent_references -0.361 -0.446**  -0.301 -0.379* -0.351 0.449 0.503* 0.429 0.482 0.421 

 
(0.219) (0.221) (0.219) (0.221) (0.221) (0.294) (0.296) (0.294) (0.296) (0.300) 

ln_average_experience -0.0917 -0.0571 -0.0997 -0.0629 -0.0581 -0.284**  -0.300**  -0.282**  -0.298**  -0.312**  

 
(0.113) (0.115) (0.113) (0.115) (0.115) (0.123) (0.123) (0.123) (0.124) (0.125) 

ln_joint_experience 0.108* 0.0982 0.107* 0.0962 0.0994 -0.0526 -0.0443 -0.0502 -0.0407 -0.0628 

 
(0.0624) (0.0617) (0.0628) (0.0623) (0.0627) (0.0827) (0.0823) (0.0823) (0.0819) (0.0804) 

Inverse Mills’ Ratio 0.539 0.592 0.537 0.591 0.579 0.844* 0.791* 0.841* 0.783* 0.803* 

 
(0.369) (0.368) (0.371) (0.371) (0.371) (0.461) (0.461) (0.461) (0.462) (0.466) 

Year fixed effects Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  

Technology fixed effects Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  

Chi square test 109.574 117.082 111.116 120.197 123.548 86.458 87.667 86.826 88.192 92.534 

Log-Likelihood -842.542 -838.906 -841.521 -837.368 -836.884 -527.881 -527.277 -527.698 -527.015 -524.844 

Observations 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910 1,910 
Robust standard errors for two-tailed tests clustered by the first inventor. * significant at 10%; **  significant at 5%; ***  significant at 1%.  
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Table 5 Regressions Analyses of Poor Innovative Outcomes (N=35,144) 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Dependent Variable Notpat Notpat Notpat Notpat Priorart Priorart Priorart Priorart Notuseful Notuseful Notuseful Notuseful 

Regression Model Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic 

Team -1.063***  -1.211***  -0.855***  -1.021***  -0.775***  -1.044***  -0.743***  -0.967***  0.168***  0.171**  0.0197 0.0550 

 
(0.0402) (0.0488) (0.0437) (0.0492) (0.0452) (0.0501) (0.0469) (0.0502) (0.0572) (0.0687) (0.0624) (0.0699) 

ln_experience_diversity 
 

0.236***  
 

0.351***  
 

0.418***  
 

0.420***  
 

-0.00607 
 

-0.204***  

  
(0.0519) 

 
(0.0662) 

 
(0.0519) 

 
(0.0680) 

 
(0.0555) 

 
(0.0764) 

ln_network_size 
  

-0.119***  -0.165***  
  

-0.0176 -0.0791***  
  

0.0827***  0.0398 

   
(0.0174) (0.0205) 

  
(0.0192) (0.0236) 

  
(0.0210) (0.0255) 

ln_expdiversity X ln_netsize 
   

0.00535 
   

0.0143 
   

0.0340***  

    
(0.00975) 

   
(0.0112) 

   
(0.0110) 

ln_average_experience -0.186***  -0.342***  -0.0438 -0.241***  -0.0494**  -0.333***  -0.0285 -0.295***  0.101***  0.105**  0.00205 0.0508 

 
(0.0208) (0.0455) (0.0335) (0.0476) (0.0235) (0.0483) (0.0391) (0.0519) (0.0228) (0.0441) (0.0387) (0.0479) 

ln_joint_experience 0.333***  0.374***  0.276***  0.318***  0.188***  0.260***  0.179***  0.230***  -0.0523 -0.0533 -0.00964 -0.0344 

 
(0.0282) (0.0298) (0.0302) (0.0316) (0.0379) (0.0360) (0.0383) (0.0338) (0.0356) (0.0372) (0.0374) (0.0398) 

Year fixed effects Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  

Technology fixed effects Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  

Chi square test 109.574 117.082 111.116 120.197 123.548 86.458 87.667 86.826 88.192 92.534 109.574 117.082 
Log-Likelihood -842.542 -838.906 -841.521 -837.368 -836.884 -527.881 -527.277 -527.698 -527.015 -524.844 -842.542 -838.906 

Robust standard errors for two-tailed tests clustered by the first inventor. * significant at 10%; **  significant at 5%; ***  significant at 1%. 
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Table 6 Descriptive statistics and correlations (N=4,183) 

  
Mean S.D. Min Max 1 2 3 4 5 6 

1 Inventor success using patents 1.512 3.047 -2 17.583       

2 Proportion sole-inventor patents 0.120 0.259 0 1 0.187      

3 New subclasses 0.522 0.743 0 5 -0.355 -0.198     

4 Cumulative inventor patents 6.241 7.711 1 - 0.634 0.144 -0.368    

5 Cohort with first patent first period 0.108 0.310 0 1 0.175 0.080 -0.155 0.387   

6 Cohort with first patent second period 0.642 0.480 0 1 0.109 0.044 -0.137 0.013 -0.465  

7 Number of subclasses 4.065 2.501 1 17 0.032 0.007 0.151 0.017 -0.005 0.041 

Correlations>|0.018| significant at 5%.  
^ The maximum of these two variables is not reported to avoid identification of Venus 
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Table 7 Cox Models of the probability of Patenting and Inventing 
  (1) (2) (3) (4) (5) (6) 

Cohort with first patent first period 2.084***  2.230***  1.962***  2.114***    

 
(0.156) (0.154) (0.163) (0.155)   

Cohort with first patent second period 1.280***  1.295***  1.311***  1.325***    
 (0.0653) (0.0755) (0.0641) (0.0735)   
Proportion sole-inventor patents 0.0860 0.0214 0.242***  0.184**    

 
(0.0791) (0.0805) (0.0744) (0.0763)   

Cumulative inventor patents -0.0571***  -0.0844***  -0.0198**  -0.0464***    

 
(0.00907) (0.0149) (0.00818) (0.0136)   

Inventor success using patents  0.0921***   0.0922***    

 
 (0.0169)  (0.0148)   

Inverse Mills' ratio    -1.825***  -1.847***    

 
  (0.114) (0.117)   

Cohort with first invention first period     1.101***  1.411***  
     (0.117) (0.144) 
Cohort with first invention second period     0.996***  1.143***  
     (0.0550) (0.0631) 
Proportion sole-inventor inventions     0.00546 0.0104 

 
    (0.0399) (0.0431) 

Cumulative inventor inventions     -0.0128***  -0.0309***  

 
    (0.00389) (0.00589) 

Inventor success using inventions      0.0370***  

 
     (0.00517) 

Log-Likelihood 
-

30020.122 -29957.237 -29705.677 -29639.333 -904408.495 -901518.698 
Observations  4,183 4,183 4,183 4,183 69,621  ̂ 69,621  ̂

^ The number of observations is been reduced by a randomly drawn percentage figure. 
Robust standard errors for two-tailed tests clustered by the first inventor. * significant at 10%; **  significant at 5%; ***  significant at 1% 
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Table 8 Poisson Regressions of Patent Characteristics Indicative of Diverging Creative Efforts 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Cohort with first patent first period -1.369***  -0.954***  -0.952***  -1.358***  -0.951***  -0.949***     

 
(0.122) (0.114) (0.114) (0.121) (0.114) (0.114)    

Cohort with first patent second period -0.590***  -0.371***  -0.362***  -0.598***  -0.358***  -0.349***     

 
(0.0492) (0.0449) (0.0449) (0.0490) (0.0452) (0.0452)    

Proportion sole-inventor patents -1.483***  -0.794***  -1.102***  -1.436***  -0.800***  -1.111***     
 (0.141) (0.123) (0.149) (0.140) (0.123) (0.149)    
Number of subclasses 0.0842***  0.0821***  0.0829***  0.0820***  0.0838***  0.0845***  0.524***  0.508***  0.508***  

 
(0.00799) (0.00756) (0.00756) (0.00800) (0.00759) (0.00759) (0.00382) (0.00362) (0.00361) 

Inventor success using patents  -0.290***  -0.328***   -0.299***  -0.337***     

 
 (0.0153) (0.0174)  (0.0158) (0.0179)    

Success X Proportion of sole-inventor patents   0.357***    0.359***     

 
  (0.0667)   (0.0672)    

Inverse Mills' ratio    -0.344***  0.210**  0.210**     

 
   (0.0915) (0.0874) (0.0871)    

Cohort with first invention first period       -0.375***  -0.342***  -0.338***  
       (0.0500) (0.0405) (0.0402) 
Cohort with first invention second period       -0.193***  -0.130***  -0.129***  
       (0.0114) (0.00942) (0.00937) 
Proportion sole-inventor inventions       -0.340***  -0.216***  -0.243***  

 
      (0.0150) (0.0136) (0.0140) 

Inventor success using inventions        -0.0559***  -0.0609***  

 
       (0.000752) (0.000926) 

Success X Proportion of sole-inventor inventions         0.0235***  

 
        (0.00238) 

Constant -0.438***  -0.492***  -0.513***  0.0468 -0.793***  -0.814***  -0.838***  -0.820***  -0.820***  

 
(0.0510) (0.0481) (0.0485) (0.138) (0.135) (0.135) (0.0104) (0.00942) (0.00939) 

Log-Likelihood -3677.924 -3424.514 -3412.758 -3670.706 -3421.686 -3409.891 -88324.665 -85125.374 -85079.680 
Observations 4,183 4,183 4,183 4,183 4,183 4,183 69,621  ̂ 69,621  ̂ 69,621  ̂

^ The number of observations is been reduced by a randomly drawn percentage figure. 
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Appendix 
Table 1A Regression Analyses of Extreme Outcomes upon Lone Invention using USPTO patents (N=5,077)^ 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 
Cites_p95 Cites_p95 Cites_p95 Cites_p95 Cites_p95 CitesEQ0 CitesEQ0 CitesEQ0 CitesEQ0 CitesEQ0 

Regression Model Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic 

Team 0.394***  0.388***  0.268* 0.272* 0.274* -0.629***  -0.682***  -0.545***  -0.601***  -0.559***  

 
(0.137) (0.146) (0.140) (0.147) (0.148) (0.179) (0.190) (0.187) (0.196) (0.196) 

ln_experience_diversity  0.0133  -0.0114 -0.0162  0.129  0.146 0.0131 

 
 (0.118)  (0.120) (0.134)  (0.164)  (0.164) (0.177) 

ln_network_size   0.0944***  0.0946***  0.0906   -0.0715* -0.0738* -0.202**  

 
  (0.0300) (0.0304) (0.0567)   (0.0427) (0.0425) (0.0896) 

ln_expdiversity_ln_netsize     0.00346     0.101 

 
    (0.0417)     (0.0638) 

ln_claims 0.411***  0.411***  0.405***  0.405***  0.405***  -0.468***  -0.468***  -0.465***  -0.464***  -0.460***  

 (0.0658) (0.0658) (0.0657) (0.0657) (0.0657) (0.0851) (0.0852) (0.0853) (0.0854) (0.0853) 

ln_patent_references 0.0379 0.0319 -0.0649 -0.0600 -0.0590 0.000760 -0.0585 0.0752 0.0104 0.0419 

 
(0.0434) (0.0649) (0.0579) (0.0712) (0.0728) (0.0580) (0.0994) (0.0725) (0.108) (0.109) 

ln_nonpatent_references -0.131 -0.128 -0.0642 -0.0664 -0.0679 0.447**  0.473***  0.410**  0.439**  0.404**  

 
(0.141) (0.143) (0.143) (0.145) (0.145) (0.177) (0.181) (0.178) (0.182) (0.183) 

ln_average_experience 0.0288 0.0285 0.0238 0.0240 0.0239 -0.0837 -0.0860 -0.0819 -0.0844 -0.0895 

 
(0.0623) (0.0623) (0.0625) (0.0625) (0.0627) (0.0693) (0.0691) (0.0695) (0.0693) (0.0694) 

ln_joint_experience 0.0819**  0.0822**  0.0802**  0.0799**  0.0799**  -0.0671 -0.0615 -0.0627 -0.0562 -0.0609 

 
(0.0344) (0.0344) (0.0345) (0.0345) (0.0346) (0.0468) (0.0475) (0.0467) (0.0474) (0.0476) 

Year fixed effects Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  

Technology fixed effects Included  Included  Included  Included  Included  Included  Included  Included  Included  Included  

Chi square test 207.120 207.416 211.992 212.489 213.213 302.898 307.966 304.643 310.757 309.390 

Log-Likelihood -2972.309 -2972.301 -2966.557 -2966.550 -2966.547 -1717.433 -1717.045 -1715.789 -1715.295 -1713.626 
Robust standard errors for two-tailed tests clustered by the first inventor. * significant at 10%; **  significant at 5%; ***  significant at 1%.  
^ The number of observations is been reduced by a randomly drawn percentage figure. 
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Table 2A Regressions of Experience Diversity and Network Size as Potential Moderators using the USPTO sample 
  (1) (2) (3) (4) (5) (6) 
Dependent variable: Experience_diversity Network_size Experience_diversity Network_size Experience_diversity Network_size 
Regression model: Negative binomial Negative binomial Negative binomial Negative binomial Negative binomial Negative binomial 
Team 0.607***  2.104***  0.673***  2.117***  0.665***  2.160***  

 (0.0501) (0.149) (0.0529) (0.155) (0.0341) (0.111) 
ln_claims 0.0345 -0.0402 0.0340 -0.0392 -0.00424 0.142***  

 (0.0241) (0.0703) (0.0241) (0.0700) (0.0147) (0.0455) 
ln_average_experience 0.556***  1.415***  0.541***  1.413***  0.636***  1.661***  

 (0.0209) (0.0549) (0.0208) (0.0547) (0.0184) (0.0436) 
ln_joint_experience -0.231***  -1.025***  -0.235***  -1.028***  -0.284***  -1.158***  

 (0.0380) (0.143) (0.0370) (0.142) (0.0316) (0.113) 
ln_patent_references 0.125***  0.125**  0.117***  0.122**  0.0555***  0.0784* 

 (0.0250) (0.0531) (0.0244) (0.0537) (0.0163) (0.0415) 
ln_nonpatent_references -0.0496***  -0.0307 -0.0360**  -0.0283 -0.0724***  0.0144 

 (0.0143) (0.0354) (0.0141) (0.0358) (0.0112) (0.0254) 
Inverse Mills' ratio 

  
0.386***  0.0600   

 
  

(0.0974) (0.262)   
Year fixed effects Included Included Included Included Included Included 
Technology fixed 
effects 

Included Included Included Included Included Included 

Chi square test 1681.093 1350.932 1742.482 1352.244 3023.134 2765.857 
Log-Likelihood -2779.427 -6952.866 -2770.247 -6952.822 -8847.910 -19156.528 
Observations 1,910 1,910 1,910 1,910 5,077  ̂ 5,077  ̂

Robust standard errors for two-tailed tests clustered by the first inventor. * significant at 10%; **  significant at 5%; ***  significant at 1%.  
Estimates of Models 5 and 6 are obtained using the full sample of USPTO granted patents while estimates of Models 1-4 using the subset of patents for which we have information 
on the R&D project. 
^ The number of observations is been reduced by a randomly drawn percentage figure. 
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