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Abstract 

 

This paper sets out to explain novelty creation by different types of organizations. We 

establish a number of empirical patterns using a large sample of biotechnology patents 

applied for between 1995 and 2005. The results show that novelty is strongly associated to 

breakthrough impact for all different organization types Ȃ small firms, large firms and 

universities. Yet, while all types of organizations seem to benefit from their novel inventions, 

we observe vast differences in the rate at which they produce novelty. These observations 

motive us to develop a model that can explain when organizations stay in their existing fields 

and when they go and explore new technological approaches. Rather than relying on 

traditional assumptions of differences in costs, capabilities and search strategies, the model 

explains differences in novelty rates through experience built up in technological fields and 

limited information on the value of new fields. This model yields a number of testable 

implications that can explain novelty creation beyond a mere distinction on size.  
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1. Introduction 

Inventions introducing novel technological approaches to a problem are pivotal in the 

process of Schumpeterian creative destruction. For instance, the Polymerase Chain Reaction 

was a novel invention introducing the capacity to multiply DNA sequences in vitro. As such, 

this invention paved the way for the rise of biotechnology and associated technological and 

economic progress. Given this association between technological novelty and breakthrough 

(and economic) performance, it is critical for policy makers to understand how novel 

inventions come about. This paper aims to contribute to this understanding by zeroing in on 

the conditions under which economic actors produce technological novelty.  

Students of the evolution of technology emphasize how technologies evolve steadily along 

trajectories, which are only rarely interrupted by a paradigm shift introduced by a novel 

invention (Dosi, 1982; Arthur, 2007, 2009). Although these novel inventions are the ultimate 

source of breakthrough impact, they are typically also surrounded by more uncertainty in 

terms of performance (Fleming, 2001; Verhoeven et al., 2015). Indeed, many novel 

approaches prove to be dead-ends or only live up to their potential after much follow-on 

inventive effort. Such uncertainty raises the concern that market failures for innovations are 

more pronounced for the novel inventions at the source of breakthrough performance. The 

high-risk-high-reward nature of inventive activity targeting novel approaches, leads to the 

question of what are the determinants of an organizationǯs decision to invest in further 

developing familiar technologies resulting in incremental improvements versus moving 

towards novel, high-potential approaches. 

A stream of literature has focused on size and incumbency of firms to explain radical 

innovation1 outcomes. Conventional wisdom views small entrants as being at an advantage 

when it comes to the generation of breakthrough innovation, while large, incumbent firms 

are better in generating follow-on incremental innovations. Empirical support of this 

conventional view is sparse and subject to debate among innovation scholars (Henderson, 

                                                           
1 We loosely adopt the term Ǯradical innovationǯ in its broad meaning hereǤ )t is to be noted that this term covers 
a wide range of different constructs, including novelty and impact, as well as technological and economic 

characteristics of technologies. 
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1993; Methé et al., 1997; Chandy & Tellis, 2000; Baumol, 2003). The lack of consensus on how to conceptualize and operationalize the different concepts related to Ǯradical innovationǯ 
further attenuates the difficulties in better understanding the issue. Moreover, it proves 

difficult to unravel the mechanisms behind breakthrough invention (Henderson, 1993). It is 

often claimed that large, incumbent firms are overly bureaucratic and myopic, which 

decreases their productivity in research that might lead to breakthrough inventions. This 

view assumes large firms are less efficient at R&D targeting breakthroughs as they lack the Ǯrightǯ capabilities. Some studies suggest remediation of this problem by implementing 

strategies that include searching beyond what the firm already knows (Rosenkopf & Nerkar, 

2001; Ahuja & Lampert, 2001). Others argue that large incumbents have less incentives 

because of fear of cannibalization of their own profits (Reinganum, 1983; Chandy & Tellis, 

1998).  

In this paper, we take a step back and analyze breakthrough performance at its source Ȃ 

novelty creation. The rationale behind this approach is that the association between 

breakthrough performance and novelty is a one-way-street only. Most breakthrough 

inventions introduce (or closely build upon) a novel technological approach. Indeed, many 

studies on breakthrough innovations implicitly or explicitly assume that breakthroughs 

come about through the introduction of a novel technological approach. Then, mechanisms 

behind novelty creation Ȃ such as distant search Ȃ are argued to be at the source of 

breakthrough performance. However, it is important to see that most novel approaches to a 

problem are of little use and might not even show up in the data because there is no (patent) 

record of them. Moreover, even if a new approach displays a lot of potential, the actual 

outcome is highly uncertain. Hence, in order to understand the few cases that make it to 

success, we need to understand the decision process behind investing in such novel 

approaches. Disregarding these underlying mechanisms behind technology strategies can 

lead to an incomplete view on organization-level drivers of breakthrough performance. 

In a first stage, this paper documents novelty and breakthrough patterns in 

biotechnology. We use new indicators to measure technological novelty (Verhoeven et al., 

2015) separately from breakthrough impact and make a distinction between 3 actor types Ȃ 

Universities, Small Firms, and Large Firms. Confirming previous studies, findings show that 
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novelty in general is related to outlier impact. Furthermore, our preliminary results show, 

controlling for technological opportunity, science-intensity and broadness of the invention, 

that both universities and small firms are relatively more active than large firms in 

generating novel inventive outcomes. Interestingly, all actor-types generate a higher rate of 

breakthrough impact for their novel inventions. This raises the question of why Ȃ while all 

actors generate breakthroughs through novelty Ȃ large firms pursue relatively less novel 

outcomes.  

In the second stage, we develop a model to explain novelty rates of inventive activity. In the modelǡ investing in a technological field ȋǮapproachǯȌ new to the actor results with some 
random probability in a novel technology. Nature defines the set of all possible technological 

approaches (fields). Each field consists of a number of projects actors can invest in. The value 

of each project is determined by nature, and projects in the same field correlate in terms of 

value. Actors only observe (the value of) a subset of all possible projects and are able to rank 

them based on their value. They make a decision to invest in a field based on the expected 

profits in that field, and select the project with the highest value. For each field, they face a 

downward sloping marginal cost behaving like an experience curve. Breakthroughs are those 

projects that are outliers in terms of value and follow simply from novelty because firms can 

invest in the most valuable project in a field first. We analyze how, in this model, expected 

field value evolves with increasing experience in the field and increasing information on a fieldǯs value. The model is able to explain differences in novelty and breakthrough rates 

without relying on conventional assumptions of differing capabilities in breakthrough 

invention.   

2. Motivating Empirical Patterns 

2.1 Methodology 

Sample 

We use all US biotech patents from 1995-2005 to track inventive activity of different 

organizations (Arts et al., 2014). Biotechnology is an interesting field to study in our context 

because of at least 3 reasons. First, since patenting is effective in biotechnology, we have a 

relatively comprehensive account of inventive activity using patent information. Second, 
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both incremental and novel inventive activity is prevalent in our time frame because the 

biotechnology sector between 1995 and 2005 was still heavily growing, yet it had enough 

maturing technologies resulting in first applications. Third, we have enough heterogeneity in 

organization types as both small companies, universities and large incumbent firms were 

investing in biotechnology.   

Data 

To distinguish between universities, large firms and small firms, we collect all 

applicant names present on the patents using the algorithm developed in Du Plessis et al. 

(2010). Since this algorithm is more reliable for larger firms, we performed further cleaning 

in order to harmonize applicant names using string similarity algorithms and manual 

verification in different iterations. We distinguish between universities and companies using 

the sector allocation developed in Du Plessis et al. (2010). We group hospitals and other governmental institutions in the Ǯothersǯ groupǤ Within companiesǡ we distinguish between 
small and large firms using previous patenting intensity and mark a company as large when 

it has a 5 year patent stock of 25 or above. Results are robust to varying the threshold used 

between 10 and 50. When calculating the patent measures, we use information on the family 

members in other offices as well (DOCDB definition, see Martinez, 2011 for more details on 

patent families). We end up with 40 797 patent families belonging to 5107 different actors.  

Variables 

To measure technological novelty, we use the indicators developed in Verhoeven et 

al. (2015). We distinguish between two types of novelty. Novelty in Recombination (NR) 

takes value 1 if at least one patent in the family makes a combination between two IPC groups 

that were previously never combined. NR captures novelty residing from making a novel 

connection between two fields of technological knowledge. Novelty in Scientific Origins 

(NSO) takes a value of 1 when at least one patent in the family cites a scientific paper from a 

Web of Science (WOS) category that was previously never cited by a patent with the focal patentǯs )PC groups, zero otherwise. NSO captures whether an invention connects a field of 

technological knowledge to a previously unconnected scientific field of knowledge.  
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To capture whether an invention entails breakthrough impact, we use forward  patent 

citations, correcting for patent families (Bakker et al., 2015). To construct our breakthrough 

measure we estimate the first and second moment of the distribution of forward citations for 

each IPC subclass Ȃ year combination. The measure takes value 1 if the patent family is among 

the 2 standard deviation outliers in the distribution of at least one of its IPC subclass Ȃ year 

combinations (Arts et al., 2014; Verhoeven et al., 2015).  

We estimate the relative novelty rate of different actors, as well as the breakthrough 

rate from both novel and incremental projects, controlling for technology fields as well as for 

a variety invention-level characteristics. To control for technology field fixed effects, we 

include IPC class dummies. Moreover, we control for family size and presence in different 

patent jurisdictions (dummies indicating whether at least one family member was filed at the 

EPO or through the PCT route). Furthermore, since our novelty measures are sensitive to the 

number of class combinations made, we control for the number of IPC subgroup 

combinations made, as well as the number of IPC subgroup Ȃ WOS category combinations. 

Moreover, since the IPC scheme is subject to changes and new IPC codes can be added 

(artificially creating new combinations), we control for whether the patent family belongs to 

an IPC code that was added to the IPC classification scheme after 1980. To control for the 

extent to which an invention relies on many previous sources, we control for the number of 

backward patent references.  

2.2 Results 

Out of our sample of 40 797 biotech patent families, applied for between 1995 and 

2005, 17 296 (about 42%) belong to large firms, 12 220 (about 30%) belong to small firms, 

7 168 (about 18%) belong to universities, and the remaining 4 113 (about 10%) belong to 

other institutions. Table 1 presents the summary statistics of and correlations between the 

different variables that will be used in the analyses. Both Novelty and Breakthrough are 

skewed phenomena (about 5% of patent families are classified as breakthrough, while less 

than 11% displayed either novelty in recombination (NR) or novelty in scientific origins 

(NSO)). In the remainder of the analyses Novelty will indicate scoring on either NR or NSO, 

and we will also use the exclusive categories (NR only, NSO only, both NR and NSO) to 

distinguish between different types of novelty. When looking at the correlations between the 
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variables used in the multivariate analyses, we see that all variables are positively correlated, 

but the correlations are generally small, decreasing concerns about multicollinearity. The 

highest correlations observed are in the range of 0.5-0.6 and occur between the EPO/PCT-

member and family size variables on the one hand, and between the number of IPC subgroup  

and IPC subgroup Ȃ WOS category combinations made. The results are robust to only 

including any one of the highly correlated variables.  

Variable Mean S.D. (1) (2) (3) (4) (5) (6) (7) (8) (9) 

(1) Breakthrough 5.40% 22.61% 1.0000          

(2) Novelty 10.65% 30.85% 0.1498* 1.0000         

(3) Family Size 6.66 6.58 0.2483* 0.1219* 1.0000        

(4) EPO member .55 .50 0.0907* 0.0946* 0.5825* 1.0000       

(5) PCT member .60 .49 0.0718* 0.0693* 0.4793* 0.6333* 1.0000      

(6) Backward Ref. 15.26 21.82 0.2592* 0.1595* 0.1580* 0.0496* 0.0321* 1.0000     

(7) New IPC .11 .32 0.0216* 0.0181* 0.0938* 0.1141* 0.1066* 0.0139* 1.0000    

(8) Nr Comb NR 20.47 42.09 0.1642* 0.1784* 0.3208* 0.2717* 0.2013* 0.1105* 0.2706* 1.0000   

(9) Nr Comb NSO 31.33 43.96 0.1859* 0.2358* 0.2478* 0.1402* 0.1349* 0.2871* 0.2535* 0.4882* 1.0000 

Table 1: Descriptive statistics of and correlation between variables in the model. * indicates p-value<0.01 

 

Table 2 displays the coefficients from a linear probability model, explaining different 

types of novelty by the type of applicant (models 1, 4, 7 and 10) where the reference category  

is large firms, controlling for the number of combinations made (models 2, 5, 8 and 11) and 

other control variables (models 3, 6, 9 and 12). The conditional descriptive statistics (models 

1, 4, 7 and 10) show that there are important differences between the actors in performing 

any type of novelty. The probability of a patent to be novel (NR or NSO, model 1) when it 

belongs to a large firm (intercept) is about 8.7%, while this probability is about 14.5% for 

small firms, 10.4% for universities and 7.9% for other institutions. Hence, small firms 

perform two thirds more novelty than large firms, universities perform 20% more novelty 

than large firms. When distinguishing between different types of novelty (models 4, 7 and 

10), we see the difference between small and large firms remains present for all types of  
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  Novel NR only NSO only NR and NSO 

  (1) (2) (3) (5) (7) (4) (6) (8) (10) (11) (12) (13) 

small 5.841*** 5.954*** 3.140*** 2.088*** 2.331*** 1.181*** 2.154*** 1.995*** 1.226*** 1.599*** 1.627*** 0.734*** 

 (0.384) (0.372) (0.337) (0.259) (0.257) (0.240) (0.239) (0.232) (0.233) (0.193) (0.189) (0.177) 

university 1.695*** 1.637*** 2.725*** -1.055*** -0.234 0.247 2.116*** 1.320*** 1.747*** 0.634** 0.551** 0.730*** 

 (0.419) (0.405) (0.374) (0.243) (0.241) (0.233) (0.291) (0.282) (0.289) (0.209) (0.207) (0.189) 

others -0.807 -0.148 1.601*** -1.170*** -0.507 0.238 0.434 0.211 0.718* -0.0707 0.148 0.645** 

 (0.471) (0.460) (0.416) (0.291) (0.288) (0.273) (0.313) (0.307) (0.307) (0.228) (0.227) (0.210) 

Family Size   0.109**   0.0931***   -0.0298   0.0455* 

   (0.0386)   (0.0244)   (0.0228)   (0.0212) 

EPO member   1.228**   0.347   1.116***   -0.235 

   (0.402)   (0.267)   (0.274)   (0.211) 

PCT member   -0.0649   0.0461   -0.228   0.117 

   (0.343)   (0.235)   (0.243)   (0.173) 

Backward Ref.   0.0487***   0.00323   0.0382***   0.00725 

   (0.00817)   (0.00548)   (0.00625)   (0.00467) 

New IPC   -2.518***   0.167   -1.432***   -1.253*** 

   (0.521)   (0.363)   (0.365)   (0.283) 

Nr Comb NR  0.0616*** 0.0355***  0.0827*** 0.0580***  -0.0401*** -0.0351***  0.0190*** 0.0126*** 

  (0.00631) (0.00612)  (0.00504) (0.00486)  (0.00301) (0.00326)  (0.00350) (0.00378) 

Nr Comb NSO  0.136*** 0.133***  -0.0353*** -0.0397***  0.114*** 0.117***  0.0578*** 0.0559*** 

  (0.00586) (0.00594)  (0.00337) (0.00373)  (0.00463) (0.00508)  (0.00382) (0.00376) 

IPC3 dummies No No Yes No No Yes No No Yes No No Yes 

Intercept 8.684*** 3.057*** 0.000398 3.845*** 2.975*** -0.768** 3.018*** 0.478** 1.896*** 1.821*** -0.395** -1.128*** 

 (0.214) (0.241) (0.405) (0.146) (0.166) (0.278) (0.130) (0.151) (0.292) (0.102) (0.133) (0.218) 

N 40797 40797 40797 40797 40797 40797 40797 40797 40797 40797 40797 40797 

R-squared 0.00728 0.0681 0.255 0.00385 0.0267 0.152 0.00274 0.0528 0.0743 0.00212 0.0408 0.172 

Table 2: Results Linear Probability model (OLS) explaining different types of novelty (Novel: scoring on either NR or NSO, NR only: scoring only on NR, NSO only: scoring only 

on NSO, NR and NSO: scoring on both NR and NSO).   Robust standard errors between brackets. 

* p-value<0.05, ** p-value<0.01, *** p-value<0.001  
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novelty, while the difference between universities and large firms are driven by differences 

in novelty including novelty in scientific sources. The coefficients of interest barely change 

when controlling for the number of combinations made. This indicates differences cannot be 

explained by heterogeneity in terms of IPC classifications (for instance level of aggregation) 

between areas where different actors patent in. Controlling for other patent characteristics 

reflecting specificities in technology field and application procedures, decreases the 

differences slightly, but the variables of interest remain highly significant and the differences 

important. 

Table 3 presents the  coefficients from a linear probability model explaining 

breakthrough performance. Models 1, 2 and 3 provide conditional descriptive statistics of 

breakthrough probability by actor (model 1), and by actor and (different types of) novelty 

(models 2 and 3). Models 4, 5 and 6 shows these results when controlling for other patent 

characteristics reflecting specificities in technology field and application procedures. When 

looking at model 1, we see that about 5.5% of patents applied for by large firms are 

breakthroughs, while 7.2% of patents applied for by small firms and 3.5% of patents applied 

for by universities are breakthroughs. These results seem to indicate a relative advantage for 

small firms, and a relative disadvantage for university (and other institutions) at generating 

breakthrough inventions. However, when distinguishing between novel and non-novel 

patents, we see that small firms, large firms and universities equally generate breakthroughs 

with their novel patents.  The relationship between novelty and breakthrough is strong, with 

differences in breakthrough probabilities around 10% between novel and non-novel patents 

(for small firms, large firms and universities). For other institutions, the difference is smaller 

(about 3.6%), but still statistically significant. These differences are accounted for by all types 

of novelty, but most strongly for patents combining novelty in scientific sourcing (NSO) and 

novelty in recombination (NR) (between 14% and 20%).  When controlling for other patent 

characteristics, general differences between actors disappear, but the differences between 

novel and non-novel patents remain (but decrease in size). These differences are accounted 

for mainly by patents that include novelty in scientific sourcing (NSO).  
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Breakthrough (1) (5) (6) (2) (7) (8) 

Small 1.579*** 0.892** 0.892** 0.368 0.0993 0.102 

 (0.291) (0.278) (0.278) (0.269) (0.264) (0.264) 

University -1.918*** -2.062*** -2.062*** 0.463 0.269 0.290 

 (0.282) (0.257) (0.257) (0.275) (0.261) (0.261) 

Others -3.045*** -2.341*** -2.341*** 0.202 0.511 0.521 

 (0.301) (0.293) (0.293) (0.290) (0.283) (0.283) 

Large X Novel  11.39***   2.340**  

  (0.960)   (0.905)  

Small X Novel  11.54***   3.793***  

  (0.919)   (0.868)  

University X Novel  10.92***   3.574**  

  (1.266)   (1.157)  

Others X Novel  3.621**   -2.331  

  (1.327)   (1.349)  

Large X NR only   7.897***   -0.700 

   (1.293)   (1.224) 

Small X NR only   8.593***   2.329 

   (1.311)   (1.232) 

University X NR 
only 

  6.978***   -0.229 

   (2.083)   (1.946) 

Others X NR only   5.029*   -1.656 

   (2.488)   (2.564) 

Large X NSO only   11.51***   4.313** 

   (1.617)   (1.522) 

Small X NSO only   9.714***   3.646** 

   (1.445)   (1.381) 

University X NSO 
only 

  11.61***   5.778*** 

   (1.827)   (1.639) 

Others X NSO only   2.686   -0.891 

   (1.833)   (1.846) 

Large X NR and 
NSO 

  18.59***   5.475* 

   (2.384)   (2.179) 

Small X NR and 
NSO 

  19.40***   6.667*** 

   (2.127)   (1.895) 

University X NR 
and NSO 

  13.96***   3.424 

   (2.804)   (2.558) 

Others X NR and 
NSO 

  3.312   -6.225* 

   (2.711)   (2.600) 
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Family Size    0.796*** 0.794*** 0.796*** 

    (0.0508) (0.0504) (0.0503) 

EPO member    -3.106*** -3.142*** -3.131*** 

    (0.361) (0.359) (0.358) 

PCT member    -1.080*** -1.073*** -1.071*** 

    (0.257) (0.256) (0.255) 

Backward Ref.    0.190*** 0.188*** 0.187*** 

    (0.00855) (0.00855) (0.00854) 

New IPC    -1.312** -1.250** -1.194** 

    (0.401) (0.402) (0.401) 

Nr Comb NR    0.0325*** 0.0316*** 0.0329*** 

    (0.00518) (0.00519) (0.00522) 

Nr Comb NSO    0.0304*** 0.0266*** 0.0233*** 

    (0.00496) (0.00501) (0.00509) 

IPC3 dummies No No No Yes Yes Yes 

Intercept 5.574*** 4.584*** 4.584*** -2.950*** -2.919*** -2.955*** 

 (0.174) (0.166) (0.166) (0.328) (0.326) (0.326) 

N 40797 40797 40797 40797 40797 40797 

R-squared 0.00450 0.0267 0.0298 0.146 0.148 0.149 

Table 3: Results Linear Probability model (OLS) explaining breakthrough rates by actor type and (different types of) novelty by 

actor. Robust standard errors between brackets. * p-value<0.05, ** p-value<0.01, *** p-value<0.001 

 

2.3 Interpretation 

From these analyses, two clear patterns emerge. First, novelty indeed seems to be the 

main driver of breakthrough performance in biotechnology. While some non-novel patents 

result in breakthrough performance, the probability to induce breakthrough performance 

strongly increases when the invention incorporates (different types of) technological 

novelty. This result confirms previous studies (Fleming, 2001; Verhoeven et al., 2015) in 

explaining high impact by the introduction of novel technological approaches. While the breakthrough rate of Ǯincrementalǯ inventions is about ͷΨǡ novel inventions have a rate of 
about 15%. Moreover, all types of actors display these increased rates for their novel 

inventions with negligible differences in size. Moreover, when controlling for other patent 

characteristics, differences between the actors disappear, but the increased rates of 

breakthroughs for novel inventions remains present.  

Second, there are important differences between different organization types in their 

novelty rates. Large firms perform significantly less inventions displaying novelty compared 
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to small firms and universities. Moreover, universities mainly create inventions which 

display novelty in scientific knowledge origins, a result which should not surprise. The 

difference between small firms and large firms is present for all types of novelty. Controlling 

for a variety of patent characteristics does not qualitatively change these conclusions.    

Tying these two facts together, raises the intriguing question of why, if all actors are able 

to create breakthroughs through novelty, there remain differences in rates of performing 

novelty. To be able to explain this, we need a theory that is able to explain why novelty leads 

to breakthrough performance for all actors, while not all actors engage to the same extent in 

creating novel inventions. In the next section we develop a model that can explain these 

patterns without relying on the assumption of systematic differences in capabilities to 

develop certain types of inventions.  Instead, it assumes downward sloping marginal costs at 

a decreasing rate to model learning about a certain technological approach. Moreover, it 

models how increasing information (or knowledge) on an approach increases its 

attractiveness. These two mechanisms increase the threshold of expected value necessary to 

move towards developing a new approach. Furthermore, it predicts more abstract 

technological knowledge leads to information on a broader range of technological 

approaches, increasing the relative likelihood to engage in developing novel technologies. 

3. The Model 

3.1 Rationale 

The model starts off with the assumption that nature defines each and every possible 

combination between components and principles to serve some purpose (=technology). 

Moreover, the value of each technology is predetermined (one can look at this as being the 

usefulness of the technology). Note that most technologies will have very limited value (they do not ǮworkǯȌǤ Thenǡ technologies group naturally into Ǯapproachesǯ or fieldsǤ The idea is that 
technologies cluster according to the knowledge that connects them. For instance, a chair is 

a different technology than a stool, but having knowledge about the how and why a chair 

functions, might lead one to the concept of a stool, whereas it will not likely lead to the 

concept of a knife. So stools and chairs are in the same field (approach), while knifes are in a 

different one. Then, it is easy to see that values of different technologies within one field are 
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correlated.  This notion of Ǯdistanceǯ according to knowledge connecting technologies and 

different fields, also makes it easier to distinguish between specific and more abstract 

knowledge. Indeed, specific knowledge can then be defined as leading to closely related 

technologies (or ideas for technologies), while more abstract knowledge can be defined as 

leading to more distant technologies. Specific knowledge on the components and principles 

of the working of a chair, might quite easily lead to the idea of a stool, while more abstract 

knowledge about its functioning such as an understanding of the mechanics and materials 

behind its functioning, might lead to the conception of a table or even a knife. In short, nature 

pre-defines each and every technology and its usefulness (value). The fact that knowledge on 

one technology might lead to the conception of the other defines distances between 

technologies. Close technologies correlate in value and group into fields, while also between 

fields, nature defines distances. 

All actors are intrinsically the same. They do not fundamentally differ in terms of costs 

they face or the profits they can make from a certain technology. They only differ from each 

other in a (1) the experience they built up by investing in projects a certain field and (2) in 

the information they have on the value of certain projects in certain fields. Indeed, they only 

observe the value of a limited number of technologies (which are the projects they could 

pursue). Furthermore, the marginal costs of performing a project (=developing the 

technology) in a field are decreasing with the number of projects they already performed in 

that field because of learning.  

Based on the information on projects in a field, the actor derives the expected value of 

investing in a field. Since they do not have information on all projects in the field, they assume 

the value of the unknown projects is equal to the average value of the projects it has 

information on. It then orders all prospective projects (including the unknown ones) 

according to their (expected) value to calculate the prospective (discounted) profits in the 

field by subtracting the marginal costs from the marginal revenues (equal to the (expected) 

values of projects). It takes into account that it will not have to invest in all projects in the 

field and calculates the optimal stopping point (where prospective marginal revenues are 

equal to marginal costs). It does so for all fields for which it has information and chooses the 

most profitable field by investing in the project with the highest expected value.  
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Then, the decision to move to a new field is dependent on the relative expected field 

values. These can change over time as more information on the value of projects is gathered. 

Two basic mechanisms are at the basis of changing expected field value over time. First is the 

experience effect. As the actor invests in projects in a certain field, its marginal costs decrease 

through learning. This decreases the average costs for a field with increasing experience 

(learning effect). However, since the best projects are chosen first, the average prospective 

revenues of a field decline (depletion effect). The total effect on the evolution of the field value 

with increasing experience depends on total value of the field, as well as on the marginal cost 

curve specificities. Second is the information effect. Given a positive actual field value, as 

more information on the value of projects in a field is available, the expected value of the field 

increases on average. The reason for this is that actors are able to rank projects and select 

the best ones. Hence, as more information becomes available, the optimal stopping point with 

limited information moves closer to the optimal stopping point under full information (which 

is the best one). Moreover, because future profits are discounted, ordering projects with 

decreasing value increases expected field value because low-value projects are relatively 

more heavily discounted than high-value projects. 

It is reasonable to assume that information on projects is gathered with each project 

performed in a field and that this information will be local to the projects performed. Then, 

the model can explain why actors are generally Ǯpath-dependentǯ. Moving to a new field will 

only occur when another fieldǯs expected value is higher than the expected value of the field 

active in. Given exactly the same value of and information on another field, the probability of 

moving with more experience in the field active in first decreases as marginal costs go down 

and more information is gathered on the field active in, then increases when learning and 

information effects decrease and the depletion effect increases. Moreover, when an actor has 

the ability to develop more abstract knowledge as their experience grows, its probability to 

move to a new field increases. This theoretical framework can explain higher novelty rates of 

small firms (less experience) and universities (more abstract knowledge generation) without 

relying on the traditional assumptions of differing costs to develop more novel technologies. 

We propose two testable implications that follow from the model. First, the likelihood to 

develop technologies new to the firm (thus with some probability, which we assume 

randomly distributed over actors, new to the world) depends on experience built up within 
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a certain field (approach) rather than on the overall size of the organization. Second, firms 

with a higher ability to generate abstract knowledge from their experience are, ceteris 

paribus, more likely to engage in developing novel approaches.   

 

3.2 Building blocks 

Nature defines C fields with P projects each. A project is denoted by ሺ݅ǡ ሻ where ݅ ߳ ሼͳǡ ʹǡ ǥ ǡ ሼͳǡ ߳  ݀݊ܽ ሽܥ ʹǡ ǥ ǡ ܲሽ. Furthermore nature defines a value ܸǡ for each project. 

For each field ݅, the actor calculates its expected profits at each time period. For notational 

simplicity, we omit a time subscript, but ask the reader to recall the calculation of expected 

profits in a field ݅ is updated each period. 

Actors only have information on  the value of a subset of projects defined by nature. ܰ 
denotes the number of projects in ݅ for which the actor knows the value. For all other ܲ െ ܰ 
projects, the actor forms expectations based on the values it knows.  

For each ݅, the actor defines its Information Set ࡿࡵ :ࡿࡵ = ሾ ݒǡଵ ǡݒ ڮ ڮ ሻݒሺܧ      ǡ௪ݒ     ሻݒሺܧ  ڮ   ǡேݒ  ሿ ݒ  ݁ݎ݄݁ݓǡଵ  ǡଶݒ   ڮ  ሻݒሺܧ ൌ ڮ ൌ ሻݒሺܧ    ڮ   ǡேݒ  ሿ 

where 

ሻݒሺܧ ൌ  ǡܰݒ
ே

ୀଵ  

And ݍ denotes the number of projects for which the value is greater or equal than ܧሺݒሻ , 

while ݓ the number of projects for which the value is smaller than ܧሺݒሻ. 

These values will be used to calculate the total expected value of a field. To this end, the actor 

defines ࡿࡵ෪  which differs from ࡿࡵ in that ࡿࡵ෪ does not contain already executed projects.  
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Then ࡿࡵ෪ is defined as: ࡿࡵ෪ ൌ ሾ ܸǡଵ  ǥ ܸǡொ ሻ ǥݒሺܧ   ሻ     ܸିௌିௐାଵݒሺܧ    ǥ ܸǡିௌ  ሿ ݁ݎ݄݁ݓ ܸǡଵ   ڮ  ܸǡொ  ሻݒሺܧ  ൌ ڮ ൌ ሻݒሺܧ   ܸିௌିௐାଵ  ڮ    ܸǡିௌ  contains all (expected) values of projects not executed yet for field ݅, in decreasing order ෪ࡿࡵ 

of (expected) value. ܳ denotes the number of projects in ࡿࡵ෪ for which the value is greater or 

equal than ܧሺݒሻ, while ܹ  denotes the number of projects in ࡿࡵ෪ for which the value is smaller 

than ܧሺݒሻ. ܵ is the number of projects already executed in field ݅. 

Then, the expected profit for each field ݅ reads 

ܧ ܲ ൌ  ሺܫ෩ܵ ǡ െ ିௌ
ୀଵ  ǡାௌሻܥܯ

Where ܥܯǡଵାௌ is the marginal cost of the first project performed given ܵ already executed 

projects. 

If ݀ is the discount rate for future profits 

ܧ ܲ ൌ  ሺܫ෩ܵ ǡ െ ǡାௌሻሺͳܥܯ  ݀ሻିଵ
ିௌ
ୀଵ  

We can split up this sum into three sums according to whether the projectsǯ values are known 
to the firm. For the first ܳ projects, the actor knows the value and it is higher than the 

expected value of the unknown projects. For the next ܲ െ ܵ െ ܹ െ ܳ  projects, the value is 

unknown, while for the last ܹ projects the value is known and below the expected value of 

the unknown projects. 

 

ܧ ܲ ൌ  ሺܫ෩ܵ ǡ െ ǡାௌሻሺͳܥܯ  ݀ሻିଵ
ொ

ୀଵ    ሺܫ෩ܵ ǡ െ ǡାௌሻሺͳܥܯ  ݀ሻିଵ
ିௌିௐ
ୀொାଵ    ሺܫ෩ܵ ǡ െ ǡାௌሻሺͳܥܯ  ݀ሻିଵ

ିௌ
ୀିௌିௐାଵ  
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The firm has the opportunity to stop investing in a field after T periods. The expected profit 

if the firm stops investing in the field after T periods is expressed as2: 

ܧ ܲǡ் ൌ  ሺܫ෩ܵ ǡ െ ǡାௌሻሺͳܥܯ  ݀ሻିଵ
୫୧୬ ሺொǡ்ሻ

ୀଵ     ሺܫ෩ܵ ǡ െ ǡାௌሻሺͳܥܯ  ݀ሻିଵ
୫୧୬ ሺିௌିௐǡ்ሻ

ୀொାଵ  
  ሺܫ෩ܵ ǡ െ ǡାௌሻሺͳܥܯ  ݀ሻିଵ

୫୧୬ ሺିௌǡ்ሻ
ୀିௌିௐାଵ  

Then, the optimal stopping point T* is calculated and the expected profit of field ݅  is expressed 

as כܲܧ ൌ  max் ሺܧ ܲǡ்ሻ 

For each field ݅ the actor calculates כܲܧ and chooses to invest in field  if כܲܧ  כܲܧ  for 

each ݅ ് כܲܧ and ,  Ͳ. ࡿࡵ෪ is the result of a stochastic process. Hence, in order to illustrate how כܲܧ depends on the 

information available to the actor later on in this section, we calculate the expected value of 

each of the ranks for the projects in ࡿࡵ෪. If, for simplicity, we assume the projects are drawn 

from a standard uniform distribution ݂݅݊ݑሺͲǡͳሻ, the mean of the ݇௧ order statistic (in 

descending order) of a sample of ݊ is given by: ሺ݊  ͳሻ െ ݇ሺ݊  ͳሻ  

This gives us following expression for ܫ ܵǡ in function of ݆ : 

۔ۖەۖ
ۓ ܫ ܵǡ ൌ  ሺ݊  ͳሻ െ ݆ሺ݊  ͳሻ                                                                                                    ݂݅ ݆  ܫݍ ܵǡ ൌ ݍ ݂݅                                                                                              ሻݒሺܧ ൏ ݆  ܲ െ ܫݓ ܵǡ ൌ ሺ݊  ͳሻ െ ሺ݆ െ ሺܲ െ ݓ െ ሻሻሺ݊ݍ  ͳሻ                                                  ݂݅ ܲ െ ݓ ൏ ݆  ܲ 

 

                                                           
2 If minሺ ܳ ǡ ܶሻ ǡ minሺܲ െ ܵ െ ܹሻ ǡ min ሺܲ െ ܵሻ is smaller than respectively ͳǡ ܳ  ͳǡ ܲ െ ܵ െ ܹ  ͳ, the 

respective summation is defined as zero. 
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3.3 Effect of Decreasing Marginal Costs on Field Value 

In this model, the expected value of a field depends on both the marginal costs of prospective 

projects and the number of prospective projects in the information set. First, we show how 

growing experience in the field affects כܲܧ discarding the effect of the number of prospective 

projects available. Two opposite forces are at work in this respect. First is the learning effect. 

With increasing experience in the field ( ܵ in the model), the marginal cost of prospective 

projects decreases. This positive effect on the expected value of a field decreases in size as 

long as ܥܯᇱᇱሺሻ  Ͳ. Second is the depletion effect. As the actor picks the best projects in a 

field first and the number of projects in a field is finite, the value of a field decreases with the 

number of projects performed. 

 

3.3.1 General Mechanism 

To show this, consider a situation in which the actor has information on all projects at all 

times. This gives us the expression for ܧ ܲ  for any number of already executed projects ܵ : 
ܧ ܲ ൌ  ሺܴܯǡ െ ǡሻሺͳܥܯ  ݀ሻିଵିௌ


ୀௌାଵ  

Note that nor ܴܯǡ , nor ܥܯǡ  have to be updated over time. The reason for this is that we 

assume full information at any time. ܧ ܲ  changes over time as less projects become available 

( ܵ increases). Then, if ܶכ is the optimal stopping point: 

ܧ ܲכ ൌ  ሺܴܯǡ െ ǡሻሺͳܥܯ  ݀ሻିଵିௌ
்כ

ୀௌାଵ  

ܶכ is the rank number of the last profitable project. Note that ܶכ does not vary over time 

because of our full information assumption (and the denominator is positive for every ݆ǡ ܵ). 

We now derive an expression of the evolution of ܧ ܲכ with increasing ܵ. 
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Let ܵ  ͳ ൌ ܺ, then ܧ ܲǡכ  can be expressed as 

ܧ ܲǡכ ൌ ǡܴܯ െ ǡܥܯ  ǡାଵܴܯ  െ ǡାଵሺͳܥܯ  ݀ሻ  ڮ  ǡܴܯ ்כ െ ǡܥܯ ்כሺͳ  ݀ሻ ்ିכ  

Now, let ܵ  ͳ ൌ ܺ  ͳ, then 

ܧ ܲǡାଵכ ൌ ǡାଵܴܯ െ ǡାଵܥܯ  ǡାଶܴܯ  െ ǡାଶሺͳܥܯ  ݀ሻ  ڮ  ǡܴܯ ்כ െ ǡܥܯ ்כሺͳ  ݀ሻ ்ିכିଵ  

Then ܧ ܲǡכ ൌ ǡܴܯ െ ǡܥܯ  ܧ ܲǡାଵכ כ ሺͳ  ݀ሻ 

Then, 

ܧ ܲǡାଵכ ൌ ሺܧ ܲǡכ െ ሺܴܯǡ െ ǡሻሻܥܯ כ ͳሺͳ  ݀ሻ 

Let οܧ ܲכ ൌ ܧ ܲǡାଵכ െ ܧ ܲǡכ , then 

οܧ ܲכ ൌ ሺܧ ܲǡכ െ ሺܴܯǡ െ ǡሻሻܥܯ כ ͳሺͳ  ݀ሻ െ ܧ ܲǡכ  

Which can be rewritten as 

οܧ ܲכ ൌ ൬ ͳሺͳ  ݀ሻ െ ͳ൰ כ ܧ ܲǡכ െ ǡܴܯ െ ǡሺͳܥܯ  ݀ሻ  

For every ܺ ߳ ሼ ͳǡʹǡ ǥ ǡ ܶכ െ ͳሽ. 

This gives us an expression for the change in field value from any period to the next one in 

function of the number of projects already performed. The intuition is the following. In the 

next period, the first project available now, will not be available anymore (depletion), which 

decreases the field value (second part of the expression). Moreover, the field value is 

discounted as it is transferred to the next period, so the difference between the discounted 

value of ܧ ܲǡכ  and the current value is taken into account (first part of the expression). 

Then we can derive the condition under which the expected profit increases: 
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൬ ͳሺͳ  ݀ሻ െ ͳ൰ כ ܧ ܲǡכ െ ͳሺͳ  ݀ሻ כ ൫ܴܯǡ െ ǡ൯ܥܯ  Ͳ 

Or, by rearranging and multiplying by ሺͳ  ݀ሻ ܴܯǡ െ ǡܥܯ ൏ െ݀ כ ܧ ܲǡכ  

 

Given ݀ כ ܧ ܲǡכ  Ͳ as long as the actor invests in field ݅, this expression shows that the value 

of a field increases as long as profits are smaller than െ݀ כ ܧ ܲǡכ .  This condition can be 

interpreted intuitively as follows: because for every ܺ some profit in the field is to be made 

in the future (otherwise ܺ ൌ  ܶכ), the loss incurred at time ܺ can be seen as an investment 

necessary to gain profits in the future. Hence, at ܺ  ͳ, this necessary investment is made 

already, increasing the total expected value of the field compared to time ܺ. Then, ݀ כ ܧ ܲǡכ  

represents the part of the expected field value that is lost between ܺ and ܺ  ͳ because of 

discounting. Hence, for the expected field value to increase, the investment made at time ܺ 

should outweigh the effect of discounting future profits over the next period. 

The main takeaway here is that field value can only increase if some loss now has to be 

incurred to secure profits in the future. This means that the marginal cost curve should be 

higher than the marginal revenue curve for some ܺ for which ܧ ܲǡכ  is still positive. A 

necessary (but not sufficient) condition for this to happen is that ܥܯԢ ൏ Ͳ for some ܺ (there is a Ǯlearningǯ effectȌǤ Moreoverǡ this learning effect should be larger than the depletion effect 
Ԣܥܯ) ൏   .ܺ Ԣ) for someܴܯ

 

3.3.2 Dependence on Parameter Values 

To show how the field value evolves with increasing values of ܺ and depends on the marginal 

cost/revenue curve parameters, consider following functional forms for the marginal 

revenues and marginal costs. 

ǡௌܴܯ ൌ ܼ כ ሺܲ  ͳሻ െ ሺ ܵ  ͳሻሺܲ  ͳሻ  
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This marginal revenue curve is the result of ܲ projects sampled from a uniform distribution 

with minimum value 0 and maximum value ܼ. Note that for full information (the value of all ܲ projects is known at all times), ܫ෩ܵ ǡ ൌ  ǡௌܴܯ
Now consider following Marginal Cost curve: 

൞ܥܯǡௌ ൌ ܭ െ ܽሺ ܵ  ͳሻ         ݂݅ ܵ  ͳ ൏ ሺܭ െ ǡௌܥܯሻܽܮ ൌ ܵ ݂݅                   ܮ  ͳ  ሺܭ െ ሻܽܮ  

Where ܭ is the cost of the first project, ܽ is the rate at which the Marginal Costs decrease, and ܮ is the minimum cost that can be observed. Then  
ሺିሻ  is the value of ܺ for which marginal 

costs become ܮ. We use this linear form as a simple case for a situation where learning occurs 

for the first projects performed, but disappears for projects above some threshold. Again, 

under the full information assumption ܥܯǡାௌ ൌ  ǡௌܥܯ
Let ܵ  ͳ ൌ ܺ. We now look at the evolution of the condition under which field value 

increases dependent on ܺ. ሺܴܯǡ െ ǡሻܥܯ ൏ െ݀ כ ሺܧ ܲǡכ ሻ 

Consider the case in which ܺ ൏ ሺିሻ  , then the expression becomes 

ܼ െ ܼ כ ܺͳ  ܲ െ ሺܭ െ ܽܺሻ ൏ െ݀ כ ሺܧ ܲǡכ ሻ 

Or 

൬ െܼͳ  ܲ  ܽ൰ כ ܺ  ܼ െ ܭ ൏ െ݀ כ ሺܧ ܲǡכ ሻ 

While if ܺ  ሺିሻ  : 

ܼ െ ܼ כ ܺͳ  ܲ െ ܮ ൏ െ݀ כ ሺܧ ܲǡכ ሻ 

In the case where ݀ ൌ Ͳ, the expression reads ቀ ିଵା  ܽቁ כ ܺ  ܼ െ ܭ ൏ Ͳ        for ܺ ൏ ሺିሻ  
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 and  ܼ െ כଵା െ ܮ ൏ Ͳ                               for ܺ  ሺିሻ  

Then we can derive under which parameter values the expected field value in/decreases with 

increasing values of ܺ.  

If ܺ ൏ ሺିሻ , the condition can be rewritten as 

൬ െܼͳ  ܲ  ܽ൰ כ ܺ ൏ ܭ െ ܼ 

if 
ିଵା  ܽ ൌ Ͳ, the change in field value is not dependent on ܺ, and increases when ܭ ൏ ܼ and 

decreases when ܭ  ܼ. However, in the latter situation the actor would never invest in the 

field to begin with ( ܶכ ൌ Ͳ). Now, when  
ିଵା  ܽ ൏ Ͳ (this is the case in which the marginal 

revenue curve is steeper than the marginal cost curve), the condition for increasing field 

profits becomes 

ܺ  ሺܭ െ ܼሻ כ ൬ െܼͳ  ܲ  ܽ൰ିଵ
 

The right hand side represents the value of ܺ for which ܴܯǡ ൌ  ǡ. So, the field valueܥܯ

decreases up until  ܺ ൌ ሺܭ െ ܼሻ כ ቀ ିଵା  ܽቁିଵ
, after which the actor stops investing as profits 

become negative for all larger ܺ. However, this situation would only occur if ܭ ൏ ܼ 

(otherwise ܶכ ൌ Ͳ).  

When 
ିଵା  ܽ  Ͳ (the case for which the marginal costs decrease faster than the marginal 

revenues up until some point), the condition for increasing field profits becomes 

ܺ ൏ ሺܭ െ ܼሻ כ ൬ െܼͳ  ܲ  ܽ൰ିଵ
 

Again, the right hand side represents the ܺ for which ܴܯǡ ൌ  ǡ. So, the field valueܥܯ

increases up until  ܺ ൌ ሺܭ െ ܼሻ כ ቀ ିଵା  ܽቁିଵ
, the intersection between marginal costs and 

marginal revenues. For larger values of ܺ, the field profit starts decreasing up until point ܶכ. 
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Now consider the case of ܺ  ሺିሻ  and ܶכ  ሺିሻ . This means there exists some ܺ  ሺିሻ  

for which ܴܯǡ  ܺ  ǡ and these curves intersect atܥܯ ൌ ܶכ.  

The condition for increasing field profits can be rewritten as 

ܺ  ሺܮ െ ܼሻሺͳ  ܲሻܼ  

The expression on the right hand side is the intersection between the marginal cost and 

marginal revenue curve. Consequently, no ܺ exists such that  
ሺିሻ  ܺ  ܶכ for which field 

value is increasing. 

If ݀  Ͳ,  the expected field profit from any period to another shifts downwards with ݀ כ ሺܧ ܲǡכ ሻ. Since ܧ ܲǡכ  is positive as long as the actor invests in the field, the condition for 

increasing expected field value over time becomes more stringent when the actor uses 

discounting of future profit streams. The rate at which ܧ ܲǡכ  changes (ܧ ܲǡାଵכ െ ܧ ܲǡכ ), cannot 

be easily expressed directly in terms of ܺ. However, we know that for values of ܺ for which ܴܯǡ െ ǡܥܯ  Ͳ, ܧ ܲǡכ  is decreasing, making the condition relatively less stringent for 

higher values of ܺ. For values of ܺ for which ܴܯǡ െ ǡܥܯ ൏ Ͳ, ܧ ܲǡכ  is increasing, making 

the condition more stringent. In conclusion, with higher values of ݀, the value of ܺ with which 

the expected field profit starts decreasing becomes lower. 

In general, the model can explain a situation in which the value of a particular field increases 

with the experience in that field. For this situation to occur, two conditions should be met. 

First, the cost of the first project should be higher than its revenue. Second, the rate at which 

costs of subsequent projects decrease should be higher than the decrease in revenues from 

these projects. The likelihood of and the extent to which fields become more attractive with 

higher experience increases with higher costs of initial projects (ܭ), lower minimum costs of 

projects (ܮ), lower values of initial projects (ܼ), higher rates at which costs decrease (ܽሻ and 

lower rates at which revenues decrease (
ିሺଵାሻ).  
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3.4 Effect of Additional Information on Field Value 

In the previous section, we assumed the actor had all information on all projects. In that 

situation, the actor could simply choose the field with the highest profit, and it would switch 

to a new field simply when the value of the field it was active in became lower than the value 

of any other field. Since full information is a very unrealistic assumption, we model limited 

information by introducing the information set, which is a subset of all projects defined by 

nature. In this section, we examine how the expected field value evolves when more 

information enters the information set, discarding the learning and depletion effect discussed 

in previous section. 

 

3.4.1 General Mechanism 

First consider a situation without discounting (݀ ൌ Ͳ), and where the firm performs every 

single project in the field ( ܶכ ൌ ܲ). Moreover, the firm always has some projects in ࡿࡵ not 

yet executed. In this scenario, the expected sample mean is equal to the population mean, 

regardless of the sample size3. Hence, with ݀ ൌ Ͳ and ܶכ ൌ ܲ, the expected field value does 

not vary with ܰ. Hence, expected field value is only influenced by the number of projects in 

the information set through the mechanism of discounting of future profits and the ability to 

select profitable projects in a field.  

Now we show that the expected field value increases with increasing ܰ when the actor does 

not perform all projects in a field ( ܶכ ൏ ܲ െ ܵ). Define οܧ ܲכ ൌ ܧ ܲǡேାଵכ െ ܧ ܲǡேכ , then  

οܧ ܲכ ൌ ܧ ܲǡேାଵ െ  ൫ܫ෩ܵ ǡ െ ǡାௌ൯ିௌܥܯ
ୀ ்ǡಿశభכ ାଵ െ ܧ ܲǡே   ሺܫ෩ܵ ǡ െ ǡାௌሻିௌܥܯ

ୀ ்ǡಿכ ାଵ  

From the argument above, we know οܧ ܲ ൌ ܧ ܲǡேାଵ െ ܧ ܲǡே ൌ Ͳ. Then 

οܧ ܲכ ൌ െ  ൫ܫ෩ܵ ǡ െ ǡାௌ൯ିௌܥܯ
ୀ ்ǡಿశభכ ାଵ   ሺܫ෩ܵ ǡ െ ǡାௌሻିௌܥܯ

ୀ ்ǡಿכ ାଵ  

                                                           
3 We proof this in the extended version of the paper, available upon request. 
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Hence, the condition under which οܧ ܲכ  Ͳ is 

 ሺܫ෩ܵ ǡ െ ǡାௌሻିௌܥܯ
ୀ ்ǡಿశభכ ାଵ ൏  ൫ܫ෩ܵ ǡ െ ǡାௌ൯ିௌܥܯ

ୀ ்ǡಿכ ାଵ  

Note that both terms of this inequality are negative, because it refers to the projects the actor 

will not pursue (negative profits).  Now, consider following expression 

ǡܲܧ ்כ ൌ  ሺܫ෩ܵ ǡ െ ǡାௌሻ୫୧୬ ሺொǡܥܯ ்כሻ
ୀଵ     ሺܫ෩ܵ ǡ െ ǡାௌሻ୫୧୬ ሺିௌିௐǡܥܯ ்כሻ

ୀொାଵ  
  ሺܫ෩ܵ ǡ െ ǡାௌሻ୫୧୬ ሺିௌǡܥܯ ்כሻ

ୀିௌିௐାଵ   ሺܫ෩ܵ ǡ െ ǡାௌሻିௌܥܯ
ୀ ்כାଵ  

With ܰ projects available in the information set (subscripts are omitted). The expression 

gives us the total expected field value if the optimal stopping point  ܶכ, provided the actor 

would not stop investing. The value of the opportunity to stop is equal to െ σ ሺܫ෩ܵ ǡ െିௌୀ ்ǡಿశభכ ାଵܥܯǡାௌሻ.  

Consider the case in which ܶכ  ܲ െ ܵ െ ܹ  ͳ. Now, when ܰ  ͳ projects would be 

available, one project is removed from the second term, and dependent on its value ܸǡ, enter 

one of the other terms. Because there is a strictly positive probability that ܸǡ ൏ ܸǡ ்כ, thus an 

additional negative profit enters the last term, the expected value of the last term decreases 

which fulfills the condition posited above.  

When ܳ  ͳ  ܶכ  ܲ െ ܵ െ ܹ, we can state, without loss of generality, that with ܰ  ͳ 

projects available, again a project is removed from the second term. With some strictly 

positive probability, ܸǡ ൏ ܸǡ ்כ, so again the expected value of the last term decreases, 

fulfilling the condition posited above. 

When ܶכ  ܳ, the second and third term of the expression are equal to zero. Hence, when 

ܰ  ͳ projects would be available, a project is removed from the last term. With some strictly 

positive probability, ܸǡ  ܸǡ ்כ, and a positive term is removed. Hence the expected value of 

the last term decreases, fulfilling the condition posited above. 
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Intuitively, we can interpret this argument as follows. Under full information, the ability to 

stop after a number of projects has a positive value, and this positive value is maximized at 

ܶכ. Now, as extra information on the field arrives, the observed distribution will be more 

similar to the actual distribution, which shifts the optimal stopping point determined based 

on the subsample of the population towards the optimal stopping point of the population 

distribution, moving the value of the ability to stop towards its maximum. 

 

Now we turn to showing how ݀ increases expected field value with increasing information.  

To show this, consider the expression for ܧ ܲ , when ܰ projects are known (subscript 

omitted). 

ܧ ܲ ൌ  ሺܫ෩ܵ ǡ െ ǡାௌሻሺͳܥܯ  ݀ሻିଵ
ொ

ୀଵ    ሺܫ෩ܵ ǡ െ ǡାௌሻሺͳܥܯ  ݀ሻିଵ
ିௌିௐ
ୀொାଵ    ሺܫ෩ܵ ǡ െ ǡାௌሻሺͳܥܯ  ݀ሻିଵ

ିௌ
ୀିௌିௐାଵ  

Now, one project enters the information set and is removed from the second term (without 

loss of generality we can assume it is ܫ෩ܵ ǡொାଵ). This project will have a value higher or lower 

than ܧሺݒሻ. The mechanism behind this argument, is that when the value of the newly entered 

project is higher, it will be discounted relatively less than when it is lower. However, the rank 

of multiple projects might change, changing their discount factor. To show that the expected 

field value always increases with extra information, we will define a lower bound of οܧ ܲ  

when the value of a new project is higher than ܧሺݒሻ, and an upper bound of οܧ ܲ  when the 

value of the new project is lower, and show that the lower bound is still always greater than 

the upper bound. 

First we write the expression when ܰ projects are available, and omit the marginal cost 

terms as it will not change with increasing information. 

ܧ ܲ ൌ  ෩ܵܫ ǡሺͳ  ݀ሻିଵ
ொ

ୀଵ     ෩ܵܫ ǡሺͳ  ݀ሻିଵ
ିௌିௐ
ୀொାଵ    ෩ܵܫ ǡሺͳ  ݀ሻିଵ

ିௌ
ୀିௌିௐାଵ  

Now consider a project entering the information set. Let ܸ ା be the expected value of a project, 

given it is higher than ܧሺݒሻ, and let ܸି be the expected value of a project, given it is lower 
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than ܧሺݒሻ. We denote the probability a project enters with value higher than ܧሺݒሻ as ܲݎାand the probability a project enters with value lower than  ܧሺݒሻ as ܲିݎ. Note that 

because of the definition of the expected value: ܲݎା כ ൫ܸା െ ሻ൯ݒሺܧ ൌ ିݎܲ כ ൫ܸି െ  .ሻ൯ݒሺܧ

Now consider the difference in expected field value when a project with ܸା enters the set. 

Let ܴା be the rank of the new project. Then all other projects with value higher than  ܧሺݒሻ 

and with rank larger or equal than ܴା are Ǯshiftedǯ one place to the futureǤ This means only 
projects with rank larger or equal ܴା and lower or equal ܳ  ͳ are affected by the project 

entering. We get this expression for the difference in expected field value: 

οܲܧǡశ ൌ ሺܸା െ ෩ܵܫ ǡோశሻሺͳ  ݀ሻோశିଵ  ሺܫ෩ܵ ǡோశ െ ෩ܵܫ ǡோశାଵሻሺͳ  ݀ሻோశ  ሺܫ෩ܵ ǡோశାଵ െ ෩ܵܫ ǡோశାଶሻሺͳ  ݀ሻோశାଵ  ڮ  ሺܫ෩ܵ ǡொିଵ െ ෩ܵܫ ǡொሻሺͳ  ݀ሻொିଵ
 ሺܫ෩ܵ ǡொ െ ሻሻሺͳݒሺܧ  ݀ሻொ  

Very similarly, we derive an expression for the change when a project with value ܸି enters 

the information set. Let ܴି be the rank of the new project. Then all other projects with value 

lower than  ܧሺݒሻ and with rank lower or equal than ܴି are Ǯshiftedǯ one place to the presentǤ 
This means only projects with rank higher or equal ܲ െ ܵ െ ܹ and lower or equal ܴି are 

affected by the project entering. This gives us following expression: 

οܧ ܲǡష ൌ ሺܫ෩ܵ ǡିௌିௐାଵ െ ሻሻሺͳݒሺܧ  ݀ሻିௌିௐିଵ  ሺܫ෩ܵ ǡିௌିௐାଶ െ ෩ܵܫ ǡିௌିௐାଵሻሺͳ  ݀ሻିௌିௐ  ڮ  ሺܫ෩ܵ ǡோష െ ෩ܵܫ ǡோషିଵሻሺͳ  ݀ሻோషିଵ
 ሺܸି െ ෩ܵܫ ǡோషሻሺͳ  ݀ሻோష  

Now we define a lower bound for οܲܧǡశ , and an upper bound for οܧ ܲǡష: 

݈ሺοܲܧǡశሻ ൌ ሺܸା െ ෩ܵܫ ǡோశሻሺͳ  ݀ሻொ  ሺܫ෩ܵ ǡோశ െ ෩ܵܫ ǡோశାଵሻሺͳ  ݀ሻொ  ሺܫ෩ܵ ǡோశାଵ െ ෩ܵܫ ǡோశାଶሻሺͳ  ݀ሻொ  ڮ
 ሺܫ෩ܵ ǡொିଵ െ ෩ܵܫ ǡொሻሺͳ  ݀ሻொ  ሺܫ෩ܵ ǡொ െ ሻሻሺͳݒሺܧ  ݀ሻொ  

ܧሺοݑ ܲǡషሻ ൌ ሺܫ෩ܵ ǡିௌିௐାଵ െ ሻሻሺͳݒሺܧ  ݀ሻିௌିௐିଵ  ሺܫ෩ܵ ǡିௌିௐାଶ െ ෩ܵܫ ǡିௌିௐାଵሻሺͳ  ݀ሻିௌିௐିଵ  ڮ
 ሺܫ෩ܵ ǡோష െ ෩ܵܫ ǡோషିଵሻሺͳ  ݀ሻିௌିௐିଵ  ሺܸି െ ෩ܵܫ ǡோషሻሺͳ  ݀ሻିௌିௐିଵ 
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Or  

݈ሺοܲܧǡశሻ ൌ ሺܸା െ ሻሻሺͳݒሺܧ  ݀ሻொ  

ܧሺοݑ ܲǡషሻ ൌ ሺܸି െ ሻሻሺͳݒሺܧ  ݀ሻିௌିௐିଵ 

Since ܲݎା and ܲିݎ are the probabilities a project with higher, respectively lower value than ܧሺݒሻ enters, we can express the expected field value change with one extra project arriving 

in the information set as οܧ ܲ ൌ ାݎܲ כ οܲܧǡశ  ିݎܲ כ οܧ ܲǡష  

The condition under which the expected field value increases is οܧ ܲ  Ͳ 

Thus ܲݎା כ οܲܧǡశ  െܲିݎ כ οܧ ܲǡష  

This is always true when ܲݎା כ ݈ሺοܲܧǡశሻ  െܲିݎ כ ܧሺοݑ ܲǡషሻ 

Or 

ାݎܲ כ ሺܸା െ ሻሻሺͳݒሺܧ  ݀ሻொ  െܲିݎ כ ሺܸି െ ሻሻሺͳݒሺܧ  ݀ሻିௌିௐିଵሻ 

Now, since ܲ ାݎ כ ൫ܸା െ ሻ൯ݒሺܧ ൌ ିݎܲ כ ൫ܸି െ ሻ൯, and ሺͳݒሺܧ  ݀ሻொ<ሺͳ  ݀ሻିௌିௐିଵ this is 

true for each distribution of project values. 

 

3.4.2 Dependence on Parameter Values 

To show how this mechanism depends on parameter values, let us turn back to our 

expression for the marginal revenues (we assume, without loss of generality that the 
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number of projects performed is zero). Moreover, because we assume a uniform 

distribution from which projects are drawn, ܧሺݒሻ ൌ ଶ  and ݓ  ݍ ൌ ݊. Then we get 

 

۔ۖۖەۖۖ
ܫۓ ܵǡ ൌ ܼ ሺ݊ כ  ͳሻ െ ݆ሺ݊  ͳሻ                                                                                                    ݂݅ ݆  ܫݍ ܵǡ ൌ ܼʹ ݍ ݂݅                                                                                                            ൏ ݆  ܲ െ ܫݓ ܵǡ ൌ ܼ כ ሺ݊  ͳሻ െ ሺ݆ െ ሺܲ െ ݊ሻሻሺ݊  ͳሻ                                                          ݂݅ ܲ െ ݓ ൏ ݆  ܲ  

The marginal cost curve is again given by  

൞ܥܯǡ ൌ ܭ െ ݆ܽ         ݂݅ ݆ ൏ ሺܭ െ ǡܥܯሻܽܮ ൌ ݆ ݂݅                   ܮ  ሺܭ െ ሻܽܮ  

 

If the field is profitable, there exists some optimal stopping point ܶכ at a given number of 

projects known ݊ at the intersection between ܫ ܵǡ  and ܥܯǡ . Since the slope of ܫ ܵǡ  is the 

same for projects with higher and lower value than 
ଶ, the optimal stopping point (and 

expected field value) will change with the same value with increasing ݊. This means we only 

need to analyze the case in which the intersection is at a value of ݆   . Now consider theݍ

case where the intersection is at a value of ݆ ൏ ሺିሻ . Then the optimal stopping point with ݊ 

projects available is at ݆ for which 

ܼ ሺ݊ כ  ͳሻ െ ݆ሺ݊  ͳሻ ൌ ܭ െ ݆ܽ 

Solving for ݆ gives 

݆ ൌ ሺܭ െ ܼሻ כ ൬ െܼͳ  ݊  ܽ൰ିଵ
 

At ݊  ͳ projects available this becomes 
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݆ ൌ ሺܭ െ ܼሻ כ ൬ െܼʹ  ݊  ܽ൰ିଵ
 

Then the change in the optimal stopping point is  

ο ܶכ ൌ ሺܭ െ ܼሻ כ ൬ െܼʹ  ݊  ܽ൰ିଵ െ ሺܭ െ ܼሻ כ ൬ െܼͳ  ݊  ܽ൰ିଵ
 

 

Since 
ିଵା  ܽ ൏ Ͳ for this case (otherwise the optimal stopping point would not be in this 

range), ο ܶכ is positive and profits will increase with 

ܼ ሺ݊ כ  ͳሻ െ ܶכሺ݊  ͳሻ െ ܼ ሺ݊ כ  ͳሻ െ ሺ ܶכ  ο ܶכሻሺ݊  ͳሻ  

Or  

 ܼ כ ο ܶכሺ݊  ͳሻ 

ο ܶכ (and hence the profit increase from extra information) decreases with higher values of ݊ as 
ିଶା െ ିଵା goes to zero with higher values of ݊. Moreover, the gain from extra 

information is higher with higher total field value, lower costs of the first project and 

steeper marginal cost curves.  

Now consider the case where the intersection is at a value of ݆  ሺିሻ . Then  

ο ܶכ ൌ ܼ െ ܼܮ  

And the increase in profits is ܼ െ ሺ݊ܮ  ͳሻ 

Again, we see that as the number of projects increases, the value of one extra project in the 

information set decreases. Moreover, the higher the total value of the field and the lower 

the lowest marginal cost the more extra information increases expected field value. 
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4. Implications 

If we assume actors face the same cost parameters, whether an actor will move to a new field 

depends on its experience built up in their existing fields on the one hand, and how its 

information set changes on the other. We have not modelled yet how the information set 

changes, or which is the underlying process of new projects entering. It is reasonable to 

assume that as experience is built up in a field, the projects entering an actorǯs information 

set are Ǯlocalǯ to the fields they are active in. Indeed, by our definition of distance, knowledge 

built up in a field will shed light on more similar technologies. Now, assume a number of 

projects of a certain field enters the information set at each time. Let the probability that 

projects from some field enter the information set decrease with the distance from that field 

to the field the actor was last active in. This mimics a situation in which an actor generates 

information on new projects through the knowledge built up in the field it is working in. Note 

that although the new projects most often will be projects in the same field working in, but 

with some likelihood, projects from neighboring fields enter. Because for a given actual value 

of a field, more information increases the expected value, this mechanism will further 

increase path-dependency of the actors.  

The model can explain the observed patterns from the analyses above and suggests a number 

of testable implications. Compared to small firms, large firms face low marginal costs and 

have a lot of projects in their information set in the fields they are active in. Hence, the 

threshold in terms of expected value necessary to move them into a new field is higher than 

for small firms. Universities are different from firms in that they generally possess a great 

deal of abstract, scientific knowledge about the fields they are active in. This increases the 

average distance of the new projects entering their information set to the fields already active 

in. Hence, for any level of experience in a field, they gain information on a larger number of 

other (more distant) fields, which increases their information for those fields, increasing the 

probability to move to new, more distant fields. 

A first implication of the model is that experience in a field is an important determinant of 

moving to a new field. This leads us to argue that, rather than overall size of the organization, 

experience in specific fields drives the decision to engage in developing new approaches. 

Second, organizations with more abstract knowledge (or the ability to create such 
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knowledge) are more likely to engage in new fields at any level of experience in existing fields. 

Moreover, the new fields they enter, are more distant from their existing fields, compared to 

novel approaches introduced by organizations without abstract knowledge. 

 

5. Conclusion 

This paper sets out to explain novelty decisions by organizations. Motivated by a number of 

empirical patterns in novelty and breakthrough innovation in biotechnology, we develop a 

model that explains novelty decisions through the mechanisms of learning, depletion and 

limited information, rather than relying on traditional assumptions on differences in 

capabilities and search strategies. As this is very preliminary work, a lot of improvements 

suggest themselves. First, we do not take into account competition in technology 

development. Introducing competitive interactions might complicate the model, but might 

also lead to a number of interesting extensions. Furthermore, the model explains decisions 

with respect to novelty to the organization, and does not yield specific predictions for novelty 

to the world (the concept measured in the empirics, and of main interest to policy makers). 

Hence, the conclusions of the model only extend to novelty to the world if we assume that 

approaches that are novel to the organization result randomly (not correlated with 

organization type, experience or the arrival of new information) in inventions novel to the 

world. Yet, we hope this version of the paper will already incite useful and lively discussion 

resulting in vast improvements.  


