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Inventions introducing novel technological approaches to a problem are pivotal in the process of
Schumpeterian creative destruction. While technological novelty is the ultimate source of breakthrough impact,
pursuing novel inventive outcomes, on the one hand, is subject to more uncertainty (Fleming, 2001), and, on the
other hand, requires distinctive capabilities (Rosenkopf & Nerkar, 2001; Shane, 2001). These distinct
characteristics raise the question of which type of organizations have the right capabilities and economic
motivation to aim at novel approaches rather than incrementally improving existing ones. Conventional wisdom
views small entrants as being at an advantage when it comes to the generation of breakthrough innovation,
while large, incumbent firms are better in generating follow-on incremental innovations. Empirical support of
this conventional view is sparse and subject to debate among innovation scholars (Henderson, 1993; Methe et
al., 1997; Chandy & Tellis, 2000; Baumol, 2003). Research gap These mixed empirical findings fail to unravel the
mechanisms behind breakthrough invention. It is often claimed that large, incumbent firms are overly
bureaucratic and myopic, which decreases their productivity in research that might lead to breakthrough
inventions. Others argue that large incumbents have less incentives because of fear of cannibalization of their
own profits. This paper aims at generating more insight in these mechanisms by zeroing in on the role of
technological novelty and its effect on breakthrough invention. We develop a simple model to explain both
investment in novel vs incremental R&D, and the rate of breakthrough invention for these types of R&GD. Theory
We develop a simple model to explain novelty rates of inventive activity as well as breakthrough outcomes. In
our model, R&D projects are either novel or incremental. For both types of projects, actors make a ranking
based on their expected return and invest in those projects for which this expected return is higher than a
constant marginal cost. For both novel and incremental projects, firms can differ in terms of their ability to
detect profitable projects, as well as in their constant marginal costs. Breakthroughs are those projects that are
outliers in terms of impact, and we assume that, on average, these are the projects with higher expected
returns. This model links breakthrough outcomes to investment choices in different types of projects and is able
to explain differences in novelty and breakthrough rates without relying on conventional assumptions of



differing capabilities in breakthrough invention. Method We use all US biotech patents from 1995-2005 to track
inventive activity of different organizations. We distinguish between universities, large firms and small firms,
and use patent-based indicators of technological novelty (Verhoeven et al., 2015) and breakthrough impact
(Arts et al., 2013). We estimate the relative novelty rate of different actors, as well as the breakthrough rate
from both novel and incremental projects, controlling for technology fields as well as for a variety invention-
level characteristics. Results Preliminary results show, controlling for technological opportunity, science-
intensity and broadness of the invention, that both universities and small firms are relatively more active than
large firms in generating novel inventive outcomes. Interestingly, all actor-types generate a higher rate of
breakthrough impact for their novel inventions. This raises the question of why - while all actors generate
breakthroughs through novelty - large firms pursue relatively less novel outcomes. Our model explains this
tension by raising the argument that large firms have lower costs for incremental projects than small firms and
universities. This will provide them with incentives to ‘accept’ incremental projects that are further down the
marginal return curve, which decreases novelty rates, but does not change the fraction of novel projects
resulting in breakthroughs. Moreover, while novelty increases breakthrough rates for all actors, the type of
novelty through which breakthroughs arise are different between the actors. Large firms benefit from making
new connections between technological fields, universities from linking scientific fields to hitherto technological
fields, and small firms benefit from both types of novelty. In conclusion, our preliminary results suggest that all
actors are capable of generating high-impact novelty (but different types), but large firms have a relative
advantage in generating incremental inventions, decreasing their relative novelty rate. References Arts, S,
Appio, F.P., Looy, B.V. (2013): Inventions shaping technological trajectories: do existing patent indicators provide
a comprehensive picture? Scientometrics 97, 397-419. Baumol, W.J. (2004): Entrepreneurial Enterprises,
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Abstract

This paper sets out to explain novelty creation by different types of organizations. We
establish a number of empirical patterns using a large sample of biotechnology patents
applied for between 1995 and 2005. The results show that novelty is strongly associated to
breakthrough impact for all different organization types - small firms, large firms and
universities. Yet, while all types of organizations seem to benefit from their novel inventions,
we observe vast differences in the rate at which they produce novelty. These observations
motive us to develop a model that can explain when organizations stay in their existing fields
and when they go and explore new technological approaches. Rather than relying on
traditional assumptions of differences in costs, capabilities and search strategies, the model
explains differences in novelty rates through experience built up in technological fields and
limited information on the value of new fields. This model yields a number of testable

implications that can explain novelty creation beyond a mere distinction on size.



1. Introduction

Inventions introducing novel technological approaches to a problem are pivotal in the
process of Schumpeterian creative destruction. For instance, the Polymerase Chain Reaction
was a novel invention introducing the capacity to multiply DNA sequences in vitro. As such,
this invention paved the way for the rise of biotechnology and associated technological and
economic progress. Given this association between technological novelty and breakthrough
(and economic) performance, it is critical for policy makers to understand how novel
inventions come about. This paper aims to contribute to this understanding by zeroing in on

the conditions under which economic actors produce technological novelty.

Students of the evolution of technology emphasize how technologies evolve steadily along
trajectories, which are only rarely interrupted by a paradigm shift introduced by a novel
invention (Dosi, 1982; Arthur, 2007, 2009). Although these novel inventions are the ultimate
source of breakthrough impact, they are typically also surrounded by more uncertainty in
terms of performance (Fleming, 2001; Verhoeven et al, 2015). Indeed, many novel
approaches prove to be dead-ends or only live up to their potential after much follow-on
inventive effort. Such uncertainty raises the concern that market failures for innovations are
more pronounced for the novel inventions at the source of breakthrough performance. The
high-risk-high-reward nature of inventive activity targeting novel approaches, leads to the
question of what are the determinants of an organization’s decision to invest in further
developing familiar technologies resulting in incremental improvements versus moving

towards novel, high-potential approaches.

A stream of literature has focused on size and incumbency of firms to explain radical
innovation! outcomes. Conventional wisdom views small entrants as being at an advantage
when it comes to the generation of breakthrough innovation, while large, incumbent firms
are better in generating follow-on incremental innovations. Empirical support of this

conventional view is sparse and subject to debate among innovation scholars (Henderson,

! We loosely adopt the term ‘radical innovation’ in its broad meaning here. It is to be noted that this term covers
a wide range of different constructs, including novelty and impact, as well as technological and economic
characteristics of technologies.



1993; Methé et al,, 1997; Chandy & Tellis, 2000; Baumol, 2003). The lack of consensus on
how to conceptualize and operationalize the different concepts related to ‘radical innovation’
further attenuates the difficulties in better understanding the issue. Moreover, it proves
difficult to unravel the mechanisms behind breakthrough invention (Henderson, 1993). It is
often claimed that large, incumbent firms are overly bureaucratic and myopic, which
decreases their productivity in research that might lead to breakthrough inventions. This
view assumes large firms are less efficient at R&D targeting breakthroughs as they lack the
‘right’ capabilities. Some studies suggest remediation of this problem by implementing
strategies that include searching beyond what the firm already knows (Rosenkopf & Nerkar,
2001; Ahuja & Lampert, 2001). Others argue that large incumbents have less incentives
because of fear of cannibalization of their own profits (Reinganum, 1983; Chandy & Tellis,

1998).

In this paper, we take a step back and analyze breakthrough performance at its source -
novelty creation. The rationale behind this approach is that the association between
breakthrough performance and novelty is a one-way-street only. Most breakthrough
inventions introduce (or closely build upon) a novel technological approach. Indeed, many
studies on breakthrough innovations implicitly or explicitly assume that breakthroughs
come about through the introduction of a novel technological approach. Then, mechanisms
behind novelty creation - such as distant search - are argued to be at the source of
breakthrough performance. However, it is important to see that most novel approaches to a
problem are of little use and might not even show up in the data because there is no (patent)
record of them. Moreover, even if a new approach displays a lot of potential, the actual
outcome is highly uncertain. Hence, in order to understand the few cases that make it to
success, we need to understand the decision process behind investing in such novel
approaches. Disregarding these underlying mechanisms behind technology strategies can

lead to an incomplete view on organization-level drivers of breakthrough performance.

In a first stage, this paper documents novelty and breakthrough patterns in
biotechnology. We use new indicators to measure technological novelty (Verhoeven et al.,
2015) separately from breakthrough impact and make a distinction between 3 actor types -

Universities, Small Firms, and Large Firms. Confirming previous studies, findings show that
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novelty in general is related to outlier impact. Furthermore, our preliminary results show,
controlling for technological opportunity, science-intensity and broadness of the invention,
that both universities and small firms are relatively more active than large firms in
generating novel inventive outcomes. Interestingly, all actor-types generate a higher rate of
breakthrough impact for their novel inventions. This raises the question of why - while all
actors generate breakthroughs through novelty - large firms pursue relatively less novel

outcomes.

In the second stage, we develop a model to explain novelty rates of inventive activity. In
the model, investing in a technological field (‘approach’) new to the actor results with some
random probability in a novel technology. Nature defines the set of all possible technological
approaches (fields). Each field consists of a number of projects actors can invest in. The value
of each project is determined by nature, and projects in the same field correlate in terms of
value. Actors only observe (the value of) a subset of all possible projects and are able to rank
them based on their value. They make a decision to invest in a field based on the expected
profits in that field, and select the project with the highest value. For each field, they face a
downward sloping marginal cost behaving like an experience curve. Breakthroughs are those
projects that are outliers in terms of value and follow simply from novelty because firms can
invest in the most valuable project in a field first. We analyze how, in this model, expected
field value evolves with increasing experience in the field and increasing information on a
field’s value. The model is able to explain differences in novelty and breakthrough rates
without relying on conventional assumptions of differing capabilities in breakthrough

invention.

2. Motivating Empirical Patterns
2.1 Methodology
Sample

We use all US biotech patents from 1995-2005 to track inventive activity of different
organizations (Arts et al.,, 2014). Biotechnology is an interesting field to study in our context
because of at least 3 reasons. First, since patenting is effective in biotechnology, we have a

relatively comprehensive account of inventive activity using patent information. Second,

4



both incremental and novel inventive activity is prevalent in our time frame because the
biotechnology sector between 1995 and 2005 was still heavily growing, yet it had enough
maturing technologies resulting in first applications. Third, we have enough heterogeneity in
organization types as both small companies, universities and large incumbent firms were

investing in biotechnology.
Data

To distinguish between universities, large firms and small firms, we collect all
applicant names present on the patents using the algorithm developed in Du Plessis et al.
(2010). Since this algorithm is more reliable for larger firms, we performed further cleaning
in order to harmonize applicant names using string similarity algorithms and manual
verification in different iterations. We distinguish between universities and companies using
the sector allocation developed in Du Plessis et al. (2010). We group hospitals and other
governmental institutions in the ‘others’ group. Within companies, we distinguish between
small and large firms using previous patenting intensity and mark a company as large when
it has a 5 year patent stock of 25 or above. Results are robust to varying the threshold used
between 10 and 50. When calculating the patent measures, we use information on the family
members in other offices as well (DOCDB definition, see Martinez, 2011 for more details on

patent families). We end up with 40 797 patent families belonging to 5107 different actors.
Variables

To measure technological novelty, we use the indicators developed in Verhoeven et
al. (2015). We distinguish between two types of novelty. Novelty in Recombination (NR)
takes value 1 if at least one patent in the family makes a combination between two IPC groups
that were previously never combined. NR captures novelty residing from making a novel
connection between two fields of technological knowledge. Novelty in Scientific Origins
(NSO) takes a value of 1 when at least one patent in the family cites a scientific paper from a
Web of Science (WOS) category that was previously never cited by a patent with the focal
patent’s [PC groups, zero otherwise. NSO captures whether an invention connects a field of

technological knowledge to a previously unconnected scientific field of knowledge.



To capture whether an invention entails breakthrough impact, we use forward patent
citations, correcting for patent families (Bakker et al.,, 2015). To construct our breakthrough
measure we estimate the first and second moment of the distribution of forward citations for
each IPC subclass - year combination. The measure takes value 1 if the patent family is among
the 2 standard deviation outliers in the distribution of at least one of its IPC subclass - year

combinations (Arts et al., 2014; Verhoeven et al,, 2015).

We estimate the relative novelty rate of different actors, as well as the breakthrough
rate from both novel and incremental projects, controlling for technology fields as well as for
a variety invention-level characteristics. To control for technology field fixed effects, we
include IPC class dummies. Moreover, we control for family size and presence in different
patentjurisdictions (dummies indicating whether at least one family member was filed at the
EPO or through the PCT route). Furthermore, since our novelty measures are sensitive to the
number of class combinations made, we control for the number of IPC subgroup
combinations made, as well as the number of [PC subgroup - WOS category combinations.
Moreover, since the IPC scheme is subject to changes and new IPC codes can be added
(artificially creating new combinations), we control for whether the patent family belongs to
an [PC code that was added to the IPC classification scheme after 1980. To control for the
extent to which an invention relies on many previous sources, we control for the number of

backward patent references.
2.2 Results

Out of our sample of 40 797 biotech patent families, applied for between 1995 and
2005, 17 296 (about 42%) belong to large firms, 12 220 (about 30%) belong to small firms,
7 168 (about 18%) belong to universities, and the remaining 4 113 (about 10%) belong to
other institutions. Table 1 presents the summary statistics of and correlations between the
different variables that will be used in the analyses. Both Novelty and Breakthrough are
skewed phenomena (about 5% of patent families are classified as breakthrough, while less
than 11% displayed either novelty in recombination (NR) or novelty in scientific origins
(NSO)). In the remainder of the analyses Novelty will indicate scoring on either NR or NSO,
and we will also use the exclusive categories (NR only, NSO only, both NR and NSO) to
distinguish between different types of novelty. When looking at the correlations between the
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variables used in the multivariate analyses, we see that all variables are positively correlated,
but the correlations are generally small, decreasing concerns about multicollinearity. The
highest correlations observed are in the range of 0.5-0.6 and occur between the EPO/PCT-
member and family size variables on the one hand, and between the number of IPC subgroup
and IPC subgroup - WOS category combinations made. The results are robust to only

including any one of the highly correlated variables.

Variable Mean SD. (1) 2 3) (4) (5) (6) (7 (8) 9)

@ Breakthrough 540% 22.61%  1.0000

@ Novelty 10.65% 30.85% 0.1498*  1.0000

) Family Size 6.66 658  02483* 01219  1.0000

(4)  EPOmember 55 50 00907+ 00946* 05825*  1.0000

(5)  PCT member 60 49 00718+ 00693* 04793 0.6333*  1.0000

(6) BackwardRef. 1526  21.82 02592* 0.1595* 0.580* 0.0496* 00321*  1.0000

@ New IPC a1 32 00216+ 00181* 00938* 0.1141* 01066* 00139  1.0000

(8 Nr Comb NR 20.47 4209 01642 0.1784* 0.3208* 0.2717* 0.2013* 0.1105* 0.2706*  1.0000
9 Nr Comb NSO 31.33 4396  0.1859* 0.2358* 0.2478* 0.1402*  0.1349* 0.2871* 0.2535*  0.4882* 1.0000

Table 1: Descriptive statistics of and correlation between variables in the model. * indicates p-value<0.01

Table 2 displays the coefficients from a linear probability model, explaining different
types of novelty by the type of applicant (models 1, 4, 7 and 10) where the reference category
is large firms, controlling for the number of combinations made (models 2, 5, 8 and 11) and
other control variables (models 3, 6, 9 and 12). The conditional descriptive statistics (models
1, 4, 7 and 10) show that there are important differences between the actors in performing
any type of novelty. The probability of a patent to be novel (NR or NSO, model 1) when it
belongs to a large firm (intercept) is about 8.7%, while this probability is about 14.5% for
small firms, 10.4% for universities and 7.9% for other institutions. Hence, small firms
perform two thirds more novelty than large firms, universities perform 20% more novelty
than large firms. When distinguishing between different types of novelty (models 4, 7 and

10), we see the difference between small and large firms remains present for all types of



Novel NR only NSO only NR and NSO
(1) (2 ©) ) (M (4 (6) 8 (10) (11) (12) (13)
small 5.841"" 5954 3.140™"  2.088™" 2.331™ 1181 2154 1.995™" 1.226™"  1.599™"  1.627" 0.734™"
(0.384) (0.372) (0.337) (0.259) (0.257) (0.240) (0.239) (0.232) (0.233) (0.193) (0.189) (0.177)
university 1.695™"  1.637""" 2.725™  -1.065™ -0.234 0.247 2.116™"  1.320™" 1747 0.634" 0.551" 0.730""
(0.419) (0.405) (0.374) (0.243) (0.241) (0.233) (0.291) (0.282) (0.289) (0.209) (0.207) (0.189)
others -0.807 -0.148 1601 -1.170"" -0.507 0.238 0.434 0.211 0.718" -0.0707 0.148 0.645™
(0.4712) (0.460) (0.416) (0.291) (0.288) (0.273) (0.313) (0.307) (0.307) (0.228) (0.227) (0.210)
Family Size 0.109" 0.0931"" -0.0298 0.0455"
(0.0386) (0.0244) (0.0228) (0.0212)
EPO member 1.228" 0.347 1.116™" -0.235
(0.402) (0.267) (0.274) (0.211)
PCT member -0.0649 0.0461 -0.228 0.117
(0.343) (0.235) (0.243) (0.273)
Backward Ref. 0.0487"" 0.00323 0.0382""" 0.00725
(0.00817) (0.00548) (0.00625) (0.00467)
New IPC -2.518™" 0.167 -1.432"" -1.253™
(0.521) (0.363) (0.365) (0.283)
Nr Comb NR 0.0616™"  0.0355"" 0.0827"**  0.0580"" -0.0401"""  -0.0351""" 0.0190"*  0.0126™"
(0.00631) (0.00612) (0.00504) (0.00486) (0.00301) (0.00326) (0.00350) (0.00378)
Nr Comb NSO 0.136™" 0.133™ -0.0353"""  -0.0397"*" 0.114™ 0.117 0.0578™"  0.0559""
(0.00586) (0.00594) (0.00337)  (0.00373) (0.00463)  (0.00508) (0.00382) (0.00376)
IPC3 dummies No No Yes No No Yes No No Yes No No Yes
Intercept 8.684™"  3.057"" 0.000398 3.845™" 2.975™" -0.768"  3.018™" 0.478" 1.896"" 1.821"" -0.395"  -1.128""
(0.214) (0.241) (0.405) (0.146) (0.166) (0.278) (0.230) (0.151) (0.292) (0.102) (0.133) (0.218)
N 40797 40797 40797 40797 40797 40797 40797 40797 40797 40797 40797 40797
R-squared 0.00728  0.0681 0.255 0.00385 0.0267 0.152 0.00274 0.0528 0.0743 0.00212  0.0408 0.172

Table 2: Results Linear Probability model (OLS) explaining different types of novelty (Novel: scoring on either NR or NSO, NR only: scoring only on NR, NSO only: scoring only

on NSO, NR and NSO: scoring on both NR and NSO). Robust standard errors between brackets.

* p-value<0.05, ** p-value<0.01, *** p-value<0.001



novelty, while the difference between universities and large firms are driven by differences
in novelty including novelty in scientific sources. The coefficients of interest barely change
when controlling for the number of combinations made. This indicates differences cannot be
explained by heterogeneity in terms of IPC classifications (for instance level of aggregation)
between areas where different actors patent in. Controlling for other patent characteristics
reflecting specificities in technology field and application procedures, decreases the
differences slightly, but the variables of interest remain highly significant and the differences

important.

Table 3 presents the coefficients from a linear probability model explaining
breakthrough performance. Models 1, 2 and 3 provide conditional descriptive statistics of
breakthrough probability by actor (model 1), and by actor and (different types of) novelty
(models 2 and 3). Models 4, 5 and 6 shows these results when controlling for other patent
characteristics reflecting specificities in technology field and application procedures. When
looking at model 1, we see that about 5.5% of patents applied for by large firms are
breakthroughs, while 7.2% of patents applied for by small firms and 3.5% of patents applied
for by universities are breakthroughs. These results seem to indicate a relative advantage for
small firms, and a relative disadvantage for university (and other institutions) at generating
breakthrough inventions. However, when distinguishing between novel and non-novel
patents, we see that small firms, large firms and universities equally generate breakthroughs
with their novel patents. The relationship between novelty and breakthrough is strong, with
differences in breakthrough probabilities around 10% between novel and non-novel patents
(for small firms, large firms and universities). For other institutions, the difference is smaller
(about 3.6%), but still statistically significant. These differences are accounted for by all types
of novelty, but most strongly for patents combining novelty in scientific sourcing (NSO) and
novelty in recombination (NR) (between 14% and 20%). When controlling for other patent
characteristics, general differences between actors disappear, but the differences between
novel and non-novel patents remain (but decrease in size). These differences are accounted

for mainly by patents that include novelty in scientific sourcing (NSO).



Breakthrough @ (5) (6) 2 @) (8)
Small 1579 0.892" 0.892" 0.368 0.0993 0.102
(0.291) (0.278) (0.278) (0.269)  (0.264)  (0.264)
University -1.918™" -2.062""" -2.062""" 0.463 0.269 0.290
(0.282) (0.257) (0.257) (0.275)  (0.261)  (0.261)
Others -3.045™" -2.341" -2.341" 0.202 0.511 0.521
(0.301) (0.293) (0.293) (0.290)  (0.283)  (0.283)
Large X Novel 11.39"™" 2.340™
(0.960) (0.905)
Small X Novel 1154 3.793™"
(0.919) (0.868)
University X Novel 10.92"" 3.574"
(1.266) (1.157)
Others X Novel 3.621"" -2.331
(1.327) (1.349)
Large X NR only 7.897""" -0.700
(1.293) (1.224)
Small X NR only 8.593™" 2.329
(1.311) (1.232)
University X NR 6.978" -0.229
only
(2.083) (1.946)
Others X NR only 5.029" -1.656
(2.488) (2.564)
Large X NSO only 1151 4.313"
(1.617) (1.522)
Small X NSO only 9.714™" 3.646™
(1.445) (1.381)
University X NSO 11.61* 5778
only
(1.827) (1.639)
Others X NSO only 2.686 -0.891
(1.833) (1.846)
Large l\>l(S(’\)|R and 1859 5475
(2.384) (2.179)
Small lil(SgR and 19.40"" 6.667""
(2.127) (1.895)
U”i‘éﬁrj&ysé NR 13.96™ 3.424
(2.804) (2.558)
OthersNXS(l;lR and 3312 -6.225"
(2.711) (2.600)

10



Family Size 0796 0794  0.796™"
(0.0508)  (0.0504)  (0.0503)

EPO member -3.106™"  -3.142"" -3.131™
(0.361) (0.359) (0.358)
PCT member -1.080""  -1.073"™" -1.071"™
(0.257) (0.256) (0.255)
Backward Ref. 0.190™" 0.188™" 0.187""
(0.00855) (0.00855) (0.00854)
New IPC -1.312" -1.250" -1.194™
(0.401) (0.402) (0.401)
Nr Comb NR 0.0325"" 0.0316™" 0.0329""
(0.00518) (0.00519) (0.00522)
Nr Comb NSO 0.0304™" 0.0266"" 0.0233""
(0.00496) (0.00501) (0.00509)
IPC3 dummies No No No Yes Yes Yes
Intercept 5.574™" 4,584 4584 -2.950""  -2.919""  -2.955""
(0.174) (0.166) (0.166) (0.328) (0.326) (0.326)
N 40797 40797 40797 40797 40797 40797
R-squared 0.00450 0.0267 0.0298 0.146 0.148 0.149

Table 3: Results Linear Probability model (OLS) explaining breakthrough rates by actor type and (different types of) novelty by
actor. Robust standard errors between brackets. * p-value<0.05, ** p-value<0.01, *** p-value<0.001

2.3 Interpretation

From these analyses, two clear patterns emerge. First, novelty indeed seems to be the
main driver of breakthrough performance in biotechnology. While some non-novel patents
result in breakthrough performance, the probability to induce breakthrough performance
strongly increases when the invention incorporates (different types of) technological
novelty. This result confirms previous studies (Fleming, 2001; Verhoeven et al., 2015) in
explaining high impact by the introduction of novel technological approaches. While the
breakthrough rate of ‘incremental’ inventions is about 5%, novel inventions have a rate of
about 15%. Moreover, all types of actors display these increased rates for their novel
inventions with negligible differences in size. Moreover, when controlling for other patent
characteristics, differences between the actors disappear, but the increased rates of

breakthroughs for novel inventions remains present.

Second, there are important differences between different organization types in their

novelty rates. Large firms perform significantly less inventions displaying novelty compared
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to small firms and universities. Moreover, universities mainly create inventions which
display novelty in scientific knowledge origins, a result which should not surprise. The
difference between small firms and large firms is present for all types of novelty. Controlling

for a variety of patent characteristics does not qualitatively change these conclusions.

Tying these two facts together, raises the intriguing question of why, if all actors are able
to create breakthroughs through novelty, there remain differences in rates of performing
novelty. To be able to explain this, we need a theory that is able to explain why novelty leads
to breakthrough performance for all actors, while not all actors engage to the same extent in
creating novel inventions. In the next section we develop a model that can explain these
patterns without relying on the assumption of systematic differences in capabilities to
develop certain types of inventions. Instead, it assumes downward sloping marginal costs at
a decreasing rate to model learning about a certain technological approach. Moreover, it
models how increasing information (or knowledge) on an approach increases its
attractiveness. These two mechanisms increase the threshold of expected value necessary to
move towards developing a new approach. Furthermore, it predicts more abstract
technological knowledge leads to information on a broader range of technological

approaches, increasing the relative likelihood to engage in developing novel technologies.

3. The Model
3.1 Rationale

The model starts off with the assumption that nature defines each and every possible
combination between components and principles to serve some purpose (=technology).
Moreover, the value of each technology is predetermined (one can look at this as being the
usefulness of the technology). Note that most technologies will have very limited value (they
do not ‘work’). Then, technologies group naturally into ‘approaches’ or fields. The idea is that
technologies cluster according to the knowledge that connects them. For instance, a chair is
a different technology than a stool, but having knowledge about the how and why a chair
functions, might lead one to the concept of a stool, whereas it will not likely lead to the
concept of a knife. So stools and chairs are in the same field (approach), while knifes are in a

different one. Then, it is easy to see that values of different technologies within one field are
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correlated. This notion of ‘distance’ according to knowledge connecting technologies and
different fields, also makes it easier to distinguish between specific and more abstract
knowledge. Indeed, specific knowledge can then be defined as leading to closely related
technologies (or ideas for technologies), while more abstract knowledge can be defined as
leading to more distant technologies. Specific knowledge on the components and principles
of the working of a chair, might quite easily lead to the idea of a stool, while more abstract
knowledge about its functioning such as an understanding of the mechanics and materials
behind its functioning, might lead to the conception of a table or even a knife. In short, nature
pre-defines each and every technology and its usefulness (value). The fact that knowledge on
one technology might lead to the conception of the other defines distances between
technologies. Close technologies correlate in value and group into fields, while also between

fields, nature defines distances.

All actors are intrinsically the same. They do not fundamentally differ in terms of costs
they face or the profits they can make from a certain technology. They only differ from each
other in a (1) the experience they built up by investing in projects a certain field and (2) in
the information they have on the value of certain projects in certain fields. Indeed, they only
observe the value of a limited number of technologies (which are the projects they could
pursue). Furthermore, the marginal costs of performing a project (=developing the
technology) in a field are decreasing with the number of projects they already performed in

that field because of learning.

Based on the information on projects in a field, the actor derives the expected value of
investing in a field. Since they do not have information on all projects in the field, they assume
the value of the unknown projects is equal to the average value of the projects it has
information on. It then orders all prospective projects (including the unknown ones)
according to their (expected) value to calculate the prospective (discounted) profits in the
field by subtracting the marginal costs from the marginal revenues (equal to the (expected)
values of projects). It takes into account that it will not have to invest in all projects in the
field and calculates the optimal stopping point (where prospective marginal revenues are
equal to marginal costs). It does so for all fields for which it has information and chooses the

most profitable field by investing in the project with the highest expected value.
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Then, the decision to move to a new field is dependent on the relative expected field
values. These can change over time as more information on the value of projects is gathered.
Two basic mechanisms are at the basis of changing expected field value over time. First is the
experience effect. As the actor invests in projects in a certain field, its marginal costs decrease
through learning. This decreases the average costs for a field with increasing experience
(learning effect). However, since the best projects are chosen first, the average prospective
revenues of a field decline (depletion effect). The total effect on the evolution of the field value
with increasing experience depends on total value of the field, as well as on the marginal cost
curve specificities. Second is the information effect. Given a positive actual field value, as
more information on the value of projects in a field is available, the expected value of the field
increases on average. The reason for this is that actors are able to rank projects and select
the best ones. Hence, as more information becomes available, the optimal stopping point with
limited information moves closer to the optimal stopping point under full information (which
is the best one). Moreover, because future profits are discounted, ordering projects with
decreasing value increases expected field value because low-value projects are relatively

more heavily discounted than high-value projects.

It is reasonable to assume that information on projects is gathered with each project
performed in a field and that this information will be local to the projects performed. Then,
the model can explain why actors are generally ‘path-dependent’. Moving to a new field will
only occur when another field’s expected value is higher than the expected value of the field
active in. Given exactly the same value of and information on another field, the probability of
moving with more experience in the field active in first decreases as marginal costs go down
and more information is gathered on the field active in, then increases when learning and
information effects decrease and the depletion effect increases. Moreover, when an actor has
the ability to develop more abstract knowledge as their experience grows, its probability to
move to a new field increases. This theoretical framework can explain higher novelty rates of
small firms (less experience) and universities (more abstract knowledge generation) without
relying on the traditional assumptions of differing costs to develop more novel technologies.
We propose two testable implications that follow from the model. First, the likelihood to
develop technologies new to the firm (thus with some probability, which we assume

randomly distributed over actors, new to the world) depends on experience built up within
14



a certain field (approach) rather than on the overall size of the organization. Second, firms
with a higher ability to generate abstract knowledge from their experience are, ceteris

paribus, more likely to engage in developing novel approaches.

3.2 Building blocks

Nature defines C fields with P projects each. A project is denoted by (i,p) where
i€{l1,2,..,Ctand p e {1,2, ..., P}. Furthermore nature defines a value V;,, for each project.
For each field i, the actor calculates its expected profits at each time period. For notational
simplicity, we omit a time subscript, but ask the reader to recall the calculation of expected

profits in a field i is updated each period.

Actors only have information on the value of a subset of projects defined by nature. N;
denotes the number of projects in i for which the actor knows the value. For all other P — N;

projects, the actor forms expectations based on the values it knows.
For each i, the actor defines its Information Set IS;:
IS;=[vix Vg E@W) - EW) viw, = Vin,]
where Viy = Vip = 2 Ew) == E() == vy,

where

N;

v. .
E(v) = #
j=1 "

And q; denotes the number of projects for which the value is greater or equal than E(v;) ,

while w; the number of projects for which the value is smaller than E (v;).

These values will be used to calculate the total expected value of a field. To this end, the actor

defines IS; which differs from IS; in that IS; does not contain already executed projects.
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Then IS; is defined as:

IS;=[Vin - Vig, EW) . E@) Vp_siwis1  Vip—s; |
where Vi,l = 2 Vi,Q = E(Ui) = e = E(vi) = VP_Si_Wi+1 = 2 Vi,P—Si

IS; contains all (expected) values of projects not executed yet for field i, in decreasing order
of (expected) value. Q; denotes the number of projects in IS; for which the value is greater or
equal than E (v;), while W; denotes the number of projects in IS; for which the value is smaller

than E (v;). S; is the number of projects already executed in field i.

Then, the expected profit for each field i reads

P-S;

EP; = Z (IS;; — MCyjys)
j=1

Where MC; 1., is the marginal cost of the first project performed given S; already executed

projects.

If d is the discount rate for future profits

EP, = Z (15 — MCijis,)
(1+d)y?

We can split up this sum into three sums according to whether the projects’ values are known
to the firm. For the first Q; projects, the actor knows the value and it is higher than the
expected value of the unknown projects. For the next P — S; — W; — Q; projects, the value is
unknown, while for the last W; projects the value is known and below the expected value of

the unknown projects.

P=5;-w P-S; —
EP, = Z(IS MCij+s) Z (15 — MCijis,) N Z (ISi; —MCyjis,)
j-1 j-1 j-1
A +d) L ard ., (Fd
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The firm has the opportunity to stop investing in a field after T periods. The expected profit

if the firm stops investing in the field after T periods is expressed as?:

min(Q;T) - min(P-S;-W;T) _
EP . — z (IS;j — MCy jys,) N 2 (ISyj — MGy jys,)
LT — j-1 j-1
= (1+d) e 1+d)
min(P-S;,T)

(IS;; — MC;jys,)
(1+d)/1t

_.l_
Jj=P=S;i-W;+1

Then, the optimal stopping point T* is calculated and the expected profit of field i is expressed

as

EP*l' = mjgx(EPi_T)

For each field i the actor calculates EP*; and chooses to invest in field o if EP*, > EP*; for

eachi # o,and EP*, > 0.

IS; is the result of a stochastic process. Hence, in order to illustrate how EP*; depends on the
information available to the actor later on in this section, we calculate the expected value of
each of the ranks for the projects in IS;. If, for simplicity, we assume the projects are drawn
from a standard uniform distribution unif(0,1), the mean of the k" order statistic (in
descending order) of a sample of n is given by:

n+1)—k
n+1)

This gives us following expression for IS; ; in function of j :

n+1)—j
1S = ———~ - ifi< g,
LJ (n+1) lf] =q;
ISi,j=E(vi) lfql<]SP—Wl
m+D)-G-CP-w;—q)) . .
IS;; = Tt D ifP—w;<j<P

2If min(Q;, T), min(P — S; — W;), min(P — S;) is smaller than respectively 1,Q; + 1,P — S; — W; + 1, the
respective summation is defined as zero.
17



3.3 Effect of Decreasing Marginal Costs on Field Value

In this model, the expected value of a field depends on both the marginal costs of prospective
projects and the number of prospective projects in the information set. First, we show how
growing experience in the field affects EP*; discarding the effect of the number of prospective
projects available. Two opposite forces are at work in this respect. First is the learning effect.
With increasing experience in the field (S; in the model), the marginal cost of prospective
projects decreases. This positive effect on the expected value of a field decreases in size as
long as MC";(p) > 0. Second is the depletion effect. As the actor picks the best projects in a
field first and the number of projects in a field is finite, the value of a field decreases with the

number of projects performed.

3.3.1 General Mechanism

To show this, consider a situation in which the actor has information on all projects at all

times. This gives us the expression for EP; for any number of already executed projects S; :

P
i (1+d)1-Si
Jj=S;+1

Note that nor MR, ;, nor MC; ; have to be updated over time. The reason for this is that we

J?
assume full information at any time. EP; changes over time as less projects become available
(S; increases). Then, if T;" is the optimal stopping point:

L (MR, — MC
EpF — (MR, i)

l j—1—Sl~
Jj=S;+1 (1 + d)

T; is the rank number of the last profitable project. Note that 7;" does not vary over time
because of our full information assumption (and the denominator is positive for every j, S;).

We now derive an expression of the evolution of EP; with increasing S;.
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LetS; + 1 = X, then EP;y can be expressed as

* MR; x4+1 — MCjx4q MRi,T{‘ - MCi,Tl-*
EPi,X = MRi,X — MCi,X + L (1 n d) 2 + .- (1 n d)Ti*_X
Now, letS; + 1 = X + 1, then
MRixi2 =MCixyo MRy —MCyp

EPjx41 = MRjx41 — MCixyq + A+ d + et R

Then
EP;:X = MRi,X - MCi,X + EPL'#:X+1 * (1 + d)

Then,

Ep'fx+1 = (EP{fX - (MRi,X - MCi,X)) *

l

(1+4d)

1
AEP; = (EPy — (MR;x — MC;x)) * ara EP;x

Which can be rewritten as

MR; x — MC; x

AEP;:( 1+d)

a+a 1)+ EPiy =

Forevery X e{1,2,.., T — 1}.

This gives us an expression for the change in field value from any period to the next one in

function of the number of projects already performed. The intuition is the following. In the

next period, the first project available now, will not be available anymore (depletion), which

decreases the field value (second part of the expression). Moreover, the field value is

discounted as it is transferred to the next period, so the difference between the discounted

value of EP;y and the current value is taken into account (first part of the expression).

Then we can derive the condition under which the expected profit increases:
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1 1
((1 +d) 1) *EPix = A+d) (MRyx = MCyx) > 0

Or, by rearranging and multiplying by (1 + d)

MRi,X - MCi,X < _d * EP::X

Givend * EP;y > 0 as long as the actor invests in field i, this expression shows that the value
of a field increases as long as profits are smaller than —d * EP;x. This condition can be
interpreted intuitively as follows: because for every X some profit in the field is to be made
in the future (otherwise X = T;), the loss incurred at time X can be seen as an investment
necessary to gain profits in the future. Hence, at X + 1, this necessary investment is made
already, increasing the total expected value of the field compared to time X. Then, d * EP;yx
represents the part of the expected field value that is lost between X and X + 1 because of

discounting. Hence, for the expected field value to increase, the investment made at time X

should outweigh the effect of discounting future profits over the next period.

The main takeaway here is that field value can only increase if some loss now has to be
incurred to secure profits in the future. This means that the marginal cost curve should be
higher than the marginal revenue curve for some X for which EP;y is still positive. A
necessary (but not sufficient) condition for this to happen is that MC'y < 0 for some X (there
is a ‘learning’ effect). Moreover, this learning effect should be larger than the depletion effect

(MC'y < MR') for some X.

3.3.2 Dependence on Parameter Values

To show how the field value evolves with increasing values of X and depends on the marginal
cost/revenue curve parameters, consider following functional forms for the marginal
revenues and marginal costs.

P+1)-(5+1)
(P+1)

MR, = Z *
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This marginal revenue curve is the result of P projects sampled from a uniform distribution
with minimum value 0 and maximum value Z. Note that for full information (the value of all

P projects is known at all times), f:?i'j = MR;g,

Now consider following Marginal Cost curve:

. (K-1L)
MCi,SizK—a(Si+1) lfSl+1< a
(K-1L)
a

MCi,Si:L lfSl+12

Where K is the cost of the first project, a is the rate at which the Marginal Costs decrease, and

L is the minimum cost that can be observed. Then ? is the value of X for which marginal

costs become L. We use this linear form as a simple case for a situation where learning occurs
for the first projects performed, but disappears for projects above some threshold. Again,

under the full information assumption MC; j, 5, = MC;,

Let S; +1 = X. We now look at the evolution of the condition under which field value

increases dependent on X.
(MR;x — MC;x) < —d = (EP/x)

(K-L)

Consider the case in which X < , then the expression becomes

X
Z—Z*1+P—(K—aX)<—d*(EPi,X)
Or
_Z .
<1+—P+a)*x+Z_K<_d*(EPi,X)
While if x > =8
VA —Z*X L d = (EP’
— — —d * N
1+P < ( l,X)

In the case where d = 0, the expression reads

(Z+a)«x+z-K<0 forx <2
14P a
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and

Z*xX
1+P

—-L <0 forXZ?

Z —
Then we can derive under which parameter values the expected field value in/decreases with

increasing values of X.

Ifx < &0

, the condition can be rewritten as

—7Z
(H—P+a>*X<K—Z

ifl:L—ZP + a = 0, the change in field value is not dependent on X, and increases when K < Z and
decreases when K > Z. However, in the latter situation the actor would never invest in the
field to begin with (T;" = 0). Now, when % + a < 0 (this is the case in which the marginal

revenue curve is steeper than the marginal cost curve), the condition for increasing field

profits becomes

-1

X>(K—Z)*<1_+Zp+a)

The right hand side represents the value of X for which MR; xy = MC; x. So, the field value
_ -1

decreasesup until X = (K — Z) * (ﬁ + a) , after which the actor stops investing as profits

become negative for all larger X. However, this situation would only occur if K < Z

(otherwise T;" = 0).

-z . : .
When o ta> 0 (the case for which the marginal costs decrease faster than the marginal
revenues up until some point), the condition for increasing field profits becomes

-1

X<(K—Z)*(1__I_Zp+a)

Again, the right hand side represents the X for which MR; y = MC; . So, the field value

. : -z -1 . . .
increases up until X = (K — Z2) * (1+_P + a) , the intersection between marginal costs and

marginal revenues. For larger values of X, the field profit starts decreasing up until point 7;".
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(K-L) (K-L)

K-L
Now consider the case of X > ——=and T;" > —— &L - ) . This means there exists some X > ~——=

for which MR; x > MC; x and these curves intersect at X = T

The condition for increasing field profits can be rewritten as

(L-2)(1+P)

X >
Z

The expression on the right hand side is the intersection between the marginal cost and

(K L

marginal revenue curve. Consequently, no X exists such that < X < T/ for which field

value is increasing.

If d >0, the expected field profit from any period to another shifts downwards with
d * (EP;y). Since EP; is positive as long as the actor invests in the field, the condition for
increasing expected field value over time becomes more stringent when the actor uses
discounting of future profit streams. The rate at which EP;’y changes (EP;x,, — EP;x), cannot
be easily expressed directly in terms of X. However, we know that for values of X for which
MR;x —MC; x > 0, EPy is decreasing, making the condition relatively less stringent for
higher values of X. For values of X for which MR; y — MC; x < 0, EP;y is increasing, making
the condition more stringent. In conclusion, with higher values of d, the value of X with which

the expected field profit starts decreasing becomes lower.

In general, the model can explain a situation in which the value of a particular field increases
with the experience in that field. For this situation to occur, two conditions should be met.
First, the cost of the first project should be higher than its revenue. Second, the rate at which
costs of subsequent projects decrease should be higher than the decrease in revenues from
these projects. The likelihood of and the extent to which fields become more attractive with
higher experience increases with higher costs of initial projects (K), lower minimum costs of

projects (L), lower values of initial projects (Z), higher rates at which costs decrease (a) and

)
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3.4 Effect of Additional Information on Field Value

In the previous section, we assumed the actor had all information on all projects. In that
situation, the actor could simply choose the field with the highest profit, and it would switch
to a new field simply when the value of the field it was active in became lower than the value
of any other field. Since full information is a very unrealistic assumption, we model limited
information by introducing the information set, which is a subset of all projects defined by
nature. In this section, we examine how the expected field value evolves when more
information enters the information set, discarding the learning and depletion effect discussed

in previous section.

3.4.1 General Mechanism

First consider a situation without discounting (d = 0), and where the firm performs every
single project in the field (T;" = P). Moreover, the firm always has some projects in IS; not
yet executed. In this scenario, the expected sample mean is equal to the population mean,
regardless of the sample size3. Hence, with d = 0 and T;" = P, the expected field value does
not vary with N;. Hence, expected field value is only influenced by the number of projects in
the information set through the mechanism of discounting of future profits and the ability to

select profitable projects in a field.

Now we show that the expected field value increases with increasing N; when the actor does

l

not perform all projects in a field (7;” < P — §;). Define AEP; = EP;y 41 — EP]y,, then

P-S; P-S;
AEP] = EPy,4+1 — Z (IS;; — MC; j1s,) — EP;y, + Z (IS;; — MC;j+s,)
jZTZNi+1+1 joiTNi+1

From the argument above, we know AEP; = EP; .41 — EP; y, = 0. Then

P-S; P-S5;
AEP; = — Z (1S — MCi,j+Si) + Z (IS;; — MC;jys,)
j=TiTNi+1+1 jol’TNi+1

3 We proof this in the extended version of the paper, available upon request.
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Hence, the condition under which AEP; > 0 is

P-S; P=S5;
Z (IS;; — MCyjys,) < Z (I5;; — MC; jus,)
J=Tinar+1 J=Tin,+1

Note that both terms of this inequality are negative, because it refers to the projects the actor

will not pursue (negative profits). Now, consider following expression

min(Q;,T;") min(P—-S;-W;,T{")
EP;r = Z (IS;; — MCyjys,) + z (IS;; — MC;j4s,)
j=1 j=Qi+1
min(P-S;,T;") P=S;
+ z (I5;; — MCyjis,) + z (IS;j — MC;j4s,)
j=P-S;i-W;+1 j=Tl-*+1

With N; projects available in the information set (subscripts are omitted). The expression

gives us the total expected field value if the optimal stopping point T, provided the actor

P-S;

would not stop investing. The value of the opportunity to stop is equal to — Zj_T* +1(f§ij —
LN+ s

MC; j,s,)-

Consider the case in which T > P —S; — W; + 1. Now, when N; + 1 projects would be
available, one projectis removed from the second term, and dependent on its value V; ,,, enter
one of the other terms. Because there is a strictly positive probability that V; , < V; 7+, thusan

additional negative profit enters the last term, the expected value of the last term decreases

which fulfills the condition posited above.

When Q; + 1 < T < P — §; — W;, we can state, without loss of generality, that with N; + 1
projects available, again a project is removed from the second term. With some strictly

positive probability, V;,, <V;r+, so again the expected value of the last term decreases,

fulfilling the condition posited above.

When T} < @Q;, the second and third term of the expression are equal to zero. Hence, when
N; + 1 projects would be available, a project is removed from the last term. With some strictly

positive probability, V;,, > Vi and a positive term is removed. Hence the expected value of

the last term decreases, fulfilling the condition posited above.
25



Intuitively, we can interpret this argument as follows. Under full information, the ability to
stop after a number of projects has a positive value, and this positive value is maximized at
T;. Now, as extra information on the field arrives, the observed distribution will be more
similar to the actual distribution, which shifts the optimal stopping point determined based
on the subsample of the population towards the optimal stopping point of the population

distribution, moving the value of the ability to stop towards its maximum.

Now we turn to showing how d increases expected field value with increasing information.
To show this, consider the expression for EP;, when N; projects are known (subscript

omitted).

B, 2 ({8 = MCijss) Z {15y — MCijus) . 2 (51 = MCyjss)
j—1 j—1 j—1
(1+d) L (AFd) ey, AFd

Now, one project enters the information set and is removed from the second term (without
loss of generality we can assume it is fSi_Qi+1). This project will have a value higher or lower
than E (v;). The mechanism behind this argument, is that when the value of the newly entered
projectis higher, it will be discounted relatively less than when it is lower. However, the rank
of multiple projects might change, changing their discount factor. To show that the expected
field value always increases with extra information, we will define a lower bound of AEP;
when the value of a new project is higher than E (v;), and an upper bound of AEP; when the
value of the new project is lower, and show that the lower bound is still always greater than

the upper bound.

First we write the expression when N; projects are available, and omit the marginal cost

terms as it will not change with increasing information.

Qi P=Si-W; P=S;

EP, = + z Z ISy
L L1+ d)J (1+d)yt 1+ d)J (1 +d)—1 (1+d)/-t

j=P=S;-W;+1

Now consider a project entering the information set. Let V' be the expected value of a project,

given it is higher than E(v;), and let V'~ be the expected value of a project, given it is lower
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than E(v;). We denote the probability a project enters with value higher than E(v;) as
Pr*and the probability a project enters with value lower than E(v;) as Pr~. Note that
because of the definition of the expected value: Pr* x (V+ — E(vi)) = Pr~ * (V‘ — E(vi)).
Now consider the difference in expected field value when a project with V* enters the set.
Let R* be the rank of the new project. Then all other projects with value higher than E (v;)
and with rank larger or equal than R* are ‘shifted’ one place to the future. This means only
projects with rank larger or equal R* and lower or equal Q; + 1 are affected by the project

entering. We get this expression for the difference in expected field value:

_ (V+ - Bi,R+) (1’311',1?’r - Ei,R++1) (Egi,R++1 - fgi,R++2) (Bi,Qi—l - fsi,Qi)
AEPL-'V+ = Rl + e + e + - 0-1
(1+d) (1+d) (1+d) (1+d)
(ﬁgi,Qi - E(w;))
(1+d)

Very similarly, we derive an expression for the change when a project with value V™ enters
the information set. Let R~ be the rank of the new project. Then all other projects with value
lower than E(v;) and with rank lower or equal than R~ are ‘shifted’ one place to the present.
This means only projects with rank higher or equal P — §; — W; and lower or equal R~ are

affected by the project entering. This gives us following expression:

AEP. - = (Bi,P—si—WiH —E(y) n (fgi,P—si—Wﬁz - Bi,P—Si—Wi+1) (ITS'LR— - Ei,R‘—l)
L 1+ d)P-Si=Wi-1 (1 + d)P=Si=Wi (1+d)F -1
(V™ —IS8;z-)
1+ d)r

Now we define a lower bound for AEP; ;,;+, and an upper bound for AEP; ,-:

v+ - fgi,}ﬁ) (Bi,R+ - Bi,R++1) (fgi,R++1 - fgi,R++2)

[(AEP;y+) =
BEPw) == aye (1+d)% (1+d)%
(B'i,Qi—1 - iEi,Qi) (ﬁgi,Qi - E(vy))
(1+d)% (1+a)Q
ISip_s,—w.+1— E(; ISip_s,-w+2 — ISip—s,—w,
u(AEP,y-) :( i,P—S;i—W;+1 ) ( i,P—S;—W;+2 i,P—S; Wl+1) L.

(1 + d)P-Si-Wwi-1 + (1+ d)P—Si-Wi-1
(IS r- — ISig-—1) (V™ —I5z-)
(1 + d)P_Si_Wi_l (1 + d)P_Si_Wi_l

27




Or

(VT =E))
l(AEPi’V+) = W
W(AEP,y-) = (V™ —E(w))

(1 + d)P_Si_Wi_l

Since Pr* and Pr~ are the probabilities a project with higher, respectively lower value than
E(v;) enters, we can express the expected field value change with one extra project arriving

in the information set as

AEP; = Pr* « AEP; y+ + Pr™ x AEP; -
The condition under which the expected field value increases is

AEP; >0
Thus
Pr* « AEP;y+ > —Pr~ * AEP; -

This is always true when

Pr* « I[(AEP;,+) > —Pr~ * u(AEP;y-)
Or

. VT —E@)) _ (VT —E))
Tarae o T T ararsewe?

Now, since Pr* « (V¥ —E(v;)) = Pr™ (V™ — E(v)),and (1 + d)?%i<(1 + d)P~Si7 Wil thisis

true for each distribution of project values.

3.4.2 Dependence on Parameter Values

To show how this mechanism depends on parameter values, let us turn back to our

expression for the marginal revenues (we assume, without loss of generality that the
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number of projects performed is zero). Moreover, because we assume a uniform

distribution from which projects are drawn, E (v;) = g and w; + q; = n. Then we get

( (n+1)—j o
1 =2* —o 70y ifji=<q
Z
m+1D)-(G-FP=-n)
P — ] [— . .<
\IS” Z * m+ D) ifP—w;<j<P

The marginal cost curve is again given by
.. (K-1L)
MC;; =K —aj ifj<

. (K-L)
MCi'j=L lf]Z

If the field is profitable, there exists some optimal stopping point 7;" at a given number of

projects known n at the intersection between IS; ; and MC; ;. Since the slope of IS; ; is the
same for projects with higher and lower value than % the optimal stopping point (and

expected field value) will change with the same value with increasing n. This means we only
need to analyze the case in which the intersection is at a value of j < g;. Now consider the
case where the intersection is at a value of j < (Ka;” Then the optimal stopping point with n
projects available is at j for which
(n+1)-j
———=K—aqj
(n+1) J

Solving for j gives

-1

-0 (v

Atn + 1 projects available this becomes
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-1

j:(K_Z)*<2_+Zn+a)

Then the change in the optimal stopping point is

-1 -1

+a> _(K_Z)*<1_+Zn+a)

2+n

ATl-*z(K—Z)*(

Since % + a < 0 for this case (otherwise the optimal stopping point would not be in this

range), AT; is positive and profits will increase with

. (n+1) -1/ 7 4 (n+1) = (T + AT))

(n+1) (n+1)

Or

Z x AT}
n+1)

AT;" (and hence the profit increase from extra information) decreases with higher values of

-z -z . . .
nas— — —-goes to zero with higher values of n. Moreover, the gain from extra

information is higher with higher total field value, lower costs of the first project and

steeper marginal cost curves.

: : o . (K-L
Now consider the case where the intersection is at a value of j > % Then

And the increase in profits is

Z—L
(n+1)

Again, we see that as the number of projects increases, the value of one extra project in the
information set decreases. Moreover, the higher the total value of the field and the lower

the lowest marginal cost the more extra information increases expected field value.
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4. Implications

If we assume actors face the same cost parameters, whether an actor will move to a new field
depends on its experience built up in their existing fields on the one hand, and how its
information set changes on the other. We have not modelled yet how the information set
changes, or which is the underlying process of new projects entering. It is reasonable to
assume that as experience is built up in a field, the projects entering an actor’s information
set are ‘local’ to the fields they are active in. Indeed, by our definition of distance, knowledge
built up in a field will shed light on more similar technologies. Now, assume a number of
projects of a certain field enters the information set at each time. Let the probability that
projects from some field enter the information set decrease with the distance from that field
to the field the actor was last active in. This mimics a situation in which an actor generates
information on new projects through the knowledge built up in the field it is working in. Note
that although the new projects most often will be projects in the same field working in, but
with some likelihood, projects from neighboring fields enter. Because for a given actual value
of a field, more information increases the expected value, this mechanism will further

increase path-dependency of the actors.

The model can explain the observed patterns from the analyses above and suggests a number
of testable implications. Compared to small firms, large firms face low marginal costs and
have a lot of projects in their information set in the fields they are active in. Hence, the
threshold in terms of expected value necessary to move them into a new field is higher than
for small firms. Universities are different from firms in that they generally possess a great
deal of abstract, scientific knowledge about the fields they are active in. This increases the
average distance of the new projects entering their information set to the fields already active
in. Hence, for any level of experience in a field, they gain information on a larger number of
other (more distant) fields, which increases their information for those fields, increasing the

probability to move to new, more distant fields.

A first implication of the model is that experience in a field is an important determinant of
moving to a new field. This leads us to argue that, rather than overall size of the organization,
experience in specific fields drives the decision to engage in developing new approaches.

Second, organizations with more abstract knowledge (or the ability to create such
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knowledge) are more likely to engage in new fields at any level of experience in existing fields.
Moreover, the new fields they enter, are more distant from their existing fields, compared to

novel approaches introduced by organizations without abstract knowledge.

5. Conclusion

This paper sets out to explain novelty decisions by organizations. Motivated by a number of
empirical patterns in novelty and breakthrough innovation in biotechnology, we develop a
model that explains novelty decisions through the mechanisms of learning, depletion and
limited information, rather than relying on traditional assumptions on differences in
capabilities and search strategies. As this is very preliminary work, a lot of improvements
suggest themselves. First, we do not take into account competition in technology
development. Introducing competitive interactions might complicate the model, but might
also lead to a number of interesting extensions. Furthermore, the model explains decisions
with respect to novelty to the organization, and does not yield specific predictions for novelty
to the world (the concept measured in the empirics, and of main interest to policy makers).
Hence, the conclusions of the model only extend to novelty to the world if we assume that
approaches that are novel to the organization result randomly (not correlated with
organization type, experience or the arrival of new information) in inventions novel to the
world. Yet, we hope this version of the paper will already incite useful and lively discussion

resulting in vast improvements.
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