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Introduction  

In the current literature on search two central issues are still left unresolved: 1) in the 

continuum from mindless particles to perfect rationality, how to model bounded rational search 

behaviour and 2) how to conceptualize the space of solutions (i.e. the interdependence 

structure) in which search takes place (Sorenson 2002, Chang and Harrington 2006, Todd, Hills 

et al. 2012, Baumann 2015). In line with work from computer science (Jones 1995, Pitzer and 

Affenzeller 2012), as well as the original fitness model formulation (Wright 1932) we show 

how the two are fundamentally intertwined and in order to be able to create better models of 

problem solving, they must be addressed together. 

Organizational theory has a long tradition of studying organizations’ search for solutions to 

‘hard’ problems, i.e. problems where it is computationally impossible or merely too expensive 

to list and test all possible solutions (Simon 1956; Cohen et al. 1972). The prevalent way of 

addressing individual or organizational search behaviour and how to conceptualize the space of 

solutions stems from early work on population genetics, namely the fitness landscape model 

(Wright 1932). Within biology, by focusing on fitness interactions between genes, Wright’s 

framework allows for a link between low-level properties of genes and the high-level patterns 

of the dynamics of evolution (Altenberg 1997). The model’s most famous extension, the NK 

model (Kauffman 1993), explicitly models adaptive evolution as a “search in protein space” 

(Kauffman 1993: p. 37) which tries to find a maximum point for a chosen fitness function. This 

approach has grown outside the boundaries of population genetics literature and inspired a 

series of scholars from computer science (e.g. Pitzer and Affenzeller 2012), organizational 

theory (e.g. Baumann and Siggelkow 2013) and physics (e.g. Sørensen et al. 2015).  

How can problem-solving be addressed in this framework? Imagine trying to solve an 

innovation problem, for instance designing a new educational app. As any software developer 

would tell you, there is no need to start from zero: nowadays there are a number of pre-defined 

libraries you can use, which you can think of as interconnected modules. But how are these 

modules interconnected and how will this affect your chances of finding a good design? (i.e. 

what does the task environment look like). Once you have a working prototype, should you 

then just go through each module, one at a time, and try to make minor improvements? (i.e. 
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what organizational theory calls ‘local search’). What if you get stuck - should you discard 

everything and start again from scratch? (i.e. ‘random long-jumps’). 

Levinthal (1997) introduces the NK model in order to facilitate the formal modelling and 

simulation of how the level of interdependence in an organization’s routines affects its long-

term chances of finding the optimal configuration of such routines and thus survive in a 

competitive environment. Typically, the organizational literature is primarily focused on how 

organizations search over the space of routines for combinations leading to increased 

performance (e.g. Levinthal 1997), but the underlying intuition is the same. By making explicit 

assumptions about individual or organizational behaviour and the environment in which the 

agent evolves, researchers could now simulate how such agents adapt over time. Based on these 

assumptions one can then map the complex dynamics of organizations being embedded in and 

adapting to the competitive environment (Levinthal 1997). This has enabled the field to go 

beyond static explanations and model possible future trajectories of the current competitive 

situation: e.g. organizations that are highly coupled (have a high interdependence between 

routines), Levinthal (1997) argues, have a higher likelihood of failure in the face of changing 

environments. Later papers have developed this approach, addressing either different 

interdependence structures (e.g. Rivkin and Siggelkow 2003) or how agents (be it individuals 

or organizations) search or adapt (Gavetti and Levinthal 2000; Gavetti and Levinthal 2001; 

Winter, Cattani et al. 2007; Baumann and Siggelkow 2013, Martignoni et al. 2015). Almost all 

of this work, however, looks at either interdependence structures (e.g. Ethiraj and Levinthal 

2004) or search behaviours in isolation (e.g. Winter et al. 2007).  

This paper attempts to address these issues to shed light on the challenges of a more systematic 

approach to modelling organizational and individual problem solving and offers a technical and 

theoretical comparative analysis of a number of assumptions about search strategies and fitness 

landscapes. This analysis is substantiated by a novel (to the organizational literature) type of 

visualization that maps how different search strategies actually ’generate’ different landscapes, 

rather than just searching in an a priori given space. We identify and explore two main 

limitations with modelling problem solving via the NK framework. First, recent research (He et 

al. 2007) has shown that unless certain complexity-theoretical assumptions are wrong1, for hard 

problems, a predictive measure of problem hardness cannot exist. This result mirrors a number 

of red flags already raised in the organizational literature (e.g. Frenken et al. 1999) regarding 

                                                           
1 P=NP respectively BPP = NP. See He et al. (2007) for an elaboration. 
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whether the NK is indeed a ‘ tuneable complexity landscape’ and calls for a more elaborated 

and systematic discussion regarding the kind of problems that can be modelled via the NK 

framework. Second, we argue that the NK framework has several limitations with respect to 

modelling more plausible search behaviours, in particular due to particular assumptions 

regarding the fitness function.  

In the following we begin, for historical reasons, to review the use of fitness landscapes in 

section 2 and search behaviours in section 3. Based on these insights from organizational 

theory and biology we discuss the implications for organizational theory of the presented 

visualizations and analysis of simulations in section 4. 

2. Fitness landscapes 

There are two main elements in the fitness landscape model that need to be specified for 

problem solving processes to be captured: the task structure (i.e. the problem that is to be 

solved) and the search behaviour (i.e. how problem solving unfolds). In order to discuss the 

difference between the “objectively defined task” (Simon and Newell 1971: p. 148) and the 

fitness landscape, which is the backbone of the NK simulations, we start by providing a short 

formal definition of fitness landscapes. The fitness landscape is in effect what the solver 

subjectively perceives or ‘the problem space’ (Simon and Newell 1971). We start by providing 

an overview of the main elements that describe an NK landscape. We caution that although we 

attempt to discuss the two issues in sequence, a certain amount of overlap is inevitable. 

 

 

2.1. NK landscapes 

In an optimization problem, a solution to a given problem is represented as a size N vector of 

(traditionally) binary variables2. The quality of a solution, in keeping with the biological 

inspiration of the model, is given by a ’fitness function’ (i.e. an objective function).  

Let X be the space of all possible solutions to a problem. In a maximizing optimization 

problem3(i.e. a problem where the goal is to find the solution for which the function f has the 

highest value), for a function f, a solution x*  X is a global optimum if  

                                                           
2 The model can be easily and without loss of generality extended to larger alphabets. 
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f(x*)≥f(x), for any x   X.    (1) 

where all binary variables are in their optimal position.  

The landscape is a mapping between solutions and fitness values that takes into account the 

connectivity between solutions. In order to define connectedness (or pre-defined similarity) 

between solutions we need to specify a distance metric. Without a definition of a metric one 

cannot define a fitness landscape as Wright (1932) conceptualized it. As such, for any type of 

problem, a fitness landscape L (X, f, d) consists of all x   X, an objective function f that 

measures the quality of each solution and a distance measure d. Following Pitzer and 

Affenzeller (2012) we can define a distance metric as:  

 d: X × X  , such that d(s,t)≥0, 

d(s,t)=0   s=t, d(s,t)≤d(s,u)+d(u,t),   s,t,u   X.     (2) 

Subsequently, the structure of the search space (Rothlauf 2011; Pitzer and Affenzeller 2012) is 

defined via the İ -neighbourhood of x:  

M (x) = {n | n א X; n ≠ x; d(x;n) ≤İ }.    (3) 

The neighbourhood function thus defines the set of all solutions that are different from the focal 

solution and within an İ radius of it, as measured by the chosen distance metric (as given by 

Equation 2). Thus, the fitness landscape’s shape (or topology) is given only in conjunction with 

a given neighbourhood function (Jones 1995): the fitness landscape (L) is not the same as the 

fitness function (f) and it is likely that for any function f there can be a number of landscapes L 

with vastly different properties (Maier et al. 2014). 

To illustrate this point, Figure 1 shows an example of the same function mapped onto three 

different landscapes using three different expressions for the neighbourhood function.  

[Insert figure 1 around here] 

We used a dimensionality reduction method that transforms high dimensional data to low-

dimensional representations while preserving pair-wise similarities (Van der Maaten and 

Hinton 2008) to create 3D visualizations of the multi-dimensional landscape4. The illustration 

on the left depicts one NK landscape generated by relying on a one-bit-flip (i.e. any two 

                                                                                                                                                                                                 
3 Conversely, in a minimizing optimization problem, x*  X is a global optimum, if f(x*)≤f(x) for any x   X. 
4 Given the fact that the t-SNE (t-distributed stochastic neighbour embedding) algorithm is stochastic, as is the NK 
fitness function, it should be noted that this is one possible illustration of one possible NK landscape with N=8, 
K=3. The illustration is not a general result for all NK landscapes of N=8 and K=3.  
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solutions are considered similar if the Hamming distance5 between them is exactly one), while 

the ones on the right depicts an NK landscape generated by relying on a two-bit flip 

neighbourhood structure (i.e. any two solutions are considered similar if the Hamming distance 

between them is exactly two). Both landscapes have the same underlying fitness function, 

generated for an NK with N=8 and K=3. Finally, the lower part of the graphic shows the same 

NK function mapped by converting the bit of strings to the decimal system (cf. Østman and  

Adami 2014) and solutions are considered to be similar if their decimal representation 

transformations are consecutive (i.e. 10011001 is transformed into 153 and its natural 

neighbours are 151 (10011000) and 154 (10011010)). The decimal representation allows for a 

up-front intuition regarding the distribution of high fitness peaks in the in the solution space 

(Østman and  Adami 2014).  

This visualization is telling in two ways. First, note that the two-bit-flip generates two different 

landscapes. Depending on the starting point, a subset of solutions is not connected in the graph. 

Similarly if one attempts to traverse a sequence of consecutive numbers with increments of 2, 

one generates two distinct and unconnected subsets: odd and even numbers. Thus, the 

definition of the neighbourhood function can effectively reduce (relative to the entire search 

space) the size of the landscape. Second, the heat-map preserves information regarding the 

distribution of fitness scores. One can assess (qualitatively in this case) the relative ease or 

difficulty of navigating towards the lighter coloured areas, in a traditional NK fashion. The 

three neighbourhood representations yield three different landscape topologies, i.e. smoother 

gradients such as the left-hand side of the two-bit flip mean that it would be easy for an agent to 

find the global optimum, while ‘patchier’ surfaces translate into a lower likelihood of success, 

such as the one-bit and the right-hand side landscape generated by the two-bit flip. 

Equivalently, in the 2D decimal representation, one can assess the difficulty of finding the 

global optimum (the highest fitness value), by looking at the shape of the generated curve. In 

the 2D case, since the decimal representation is arbitrary, the ‘decimal’ landscape is very 

“rugged”, thus a solver will likely get stuck in a suboptimal solution.  

K/N ratios or epistatic interactions 

While in the previous section we have shown how landscapes are defined and how the topology 

of the landscape changes as a result of the definition of the neighbourhood function, we now 
                                                           

5 The number of variables which have different values.  
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turn to how scholars have attempted to describe or more formally capture the ruggedness of a 

landscape, within the NK framework. 

In the NK model, a solution to a given problem is represented as a size N vector of binary 

variables and the fitness function f is the average across all contributions in the genome. The 

details of how these contributions are computed are explained below. 

f(x)= 
ଵேσ ேୀଵݔ    (4) 

The parameter K gives the number of interactions between the N alleles (i.e. variables). For 

K=0, each contribution can take only two possible values. The single allele contributions are 

independent and identically distributed random variables. Each allele has one state that is 

preferable to the other, independently of the values of the other variables. The global optimum 

is the state where all alleles are in the individual optimal position. The global optimum can be 

reached from any initial configuration.  

For K>0 the contribution of each allele depends on the position of a number of other K alleles. 

The choice of which alleles are interdependent is at the latitude of the modeller, but a common 

assumption is that neighbouring solutions influence each other. For example, for N=4, K=1, a 

solver cannot determine the optimal position for the first site in the solution, but has to compute 

all four possible combinations for the first and second site: {00, 01, 11, 10} and then choose the 

maximizing sequence. For K=N-1 the entire sequence appears in the argument of each single 

gene contribution and each step replaces the fitness with a different random number. The 

interdependence between alleles (or solution components) is known as epistasis, a term 

borrowed from biology where it denotes the fact that the expression of a gene is altered by the 

presence of another.  

Early organizational studies relying on the NK model follow on the path proposed by 

Kauffman (1993) and study how the attributes of the search space influence the propensity of 

finding the optimal solution by an one-bit-flip hill climber (e.g. Levinthal 1997; Ethiraj and 

Levinthal 2004). Indeed, part of the NK model’s popularity in organizational literature is due to 

the fact that it allows the investigation of different problem difficulties (Afuah and Tucci 2012), 

via the K/N ratio, or the level of epistatic interactions (Weise et al. 2009). Epistasis is 

equivalent to the non-linearity of a problem or how well a problem can be decomposed into 

sub-problems (Rothlauf 2011; Pitzer and Affenzeller 2012). In other words, epistasis gives a 
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measure of signal to noise in what concerns the evaluations of the fitness function. Consider the 

N=4, K=1 example used before. A solver with {x=(0,0,0,1), f(x)=0.56}, might move to 

{x*=(0,0,0,0), f(x* )=0.58}, even though {y=(0,0,1,1), f(y)=0.72}. The fact that the optimal 

setting for the fourth allele is {1} is obscured by the epistatic interaction with its neighbour on 

the third position. In the light switch example, it is naturally easier to detect the optimal 

configurations for the light switches provided they control distinct parts of the lighting in the 

room. That is, only for K=0, the contribution of each allele is independent and a solver can 

easily detect the optimal configurations and epistasis is 0.  

2.2.Landscape features 

Despite the fact that the notion of epistatic interactions, as outlined above, is extremely 

important within organizational theory, its use in quantifying the hardness of a problem has 

often been criticized (Mason 1995; Naudts and Verschoren 1999) in particular due to the 

difficulty of identifying measures of epistasis that have enough predictive power (Pitzer and 

Affenzeller 2012). There are several known limitations to using epistasis measures as proxies 

for problem complexity. First, epistatic interactions can be both positive and negative. Whether 

an interaction effect between two alleles is positive or negative has a significant impact on the 

difficulty of a problem, but epistasis measures (e.g. epistasis variance or correlation) cannot 

capture this distinction (Naudts and Kallel 2000). Second, empirical evidence suggests that 

epistatic interactions can occur at several levels (i.e. there are hierarchical interdependence 

structures) and this has consequences for the long-term dynamics of the system (Szendro et al. 

2013). Thus, what is important is not acknowledging that a problem has epistatic interactions, 

but rather identifying the nature of those interactions.  

Paralleling this trend, recent years have seen considerable development when it comes to the 

study of fitness landscapes (Pitzer and Affenzeller 2012; Malan and Engelbrecht 2013; 

McClymont 2013; Østman and  Adami 2014) with a focus shift from characterizing problem 

hardness (via ruggedness measures) to characterizing fitness landscapes in order to determine 

the appropriate algorithm (McClymont 2013). The shift is due to the fact that fitness landscape 

analysis allows for “a deeper understanding of a whole problem class” (Pitzer and Affenzeller 

2012: p. 3) rather than a specific problem instance. Current research thus aims at identifying 

relevant features that can describe a fitness landscape and that have known properties with 

respect to problem solving difficulty (Malan and Engelbrecht 2014). Malan and Engelbrecht 
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(2014) identify three such features as potentially predictive of performance: ruggedness, 

neutrality and deceptiveness (Figure 2).  

In keeping with the organizational theory approach, where the one-bit hill-climbing algorithm 

is the dominant search behaviour, in the following we describe how these features can affect 

the likelihood of finding the optimal solution for a classic one-bit hill -climbing algorithm, but 

they are not limited to this search heuristic.  

[Insert  figure 2 around here] 

2.2.1. Landscape ruggedness: modality and locality measures 

In the previous section we have addressed how prior research has used K or K/N ratios as 

measures of landscape ruggedness or problem complexity. Indeed, Kauffman (1993) has shown 

that given the one-bit flip assumption, the ruggedness of an NK landscape is captured by the K 

parameter. However, although it is clear that highly epistatic landscapes are hard to search, it is 

not clear how much epistasis “is needed to make a problem difficult” (Jones 1995: p. 134). 

Thus, in the following, we present a number of alternative measures to capture landscape 

ruggedness. 

In computer science, a frequently used measure of landscape ruggedness is the number of local 

maxima, or the modality of a landscape. The modality of a given landscape is often computed 

relative to the size of the fitness landscape: the higher the density of such deceiving optima, the 

more complex the problem, i.e. the higher the likelihood that a solver will be stuck and unable 

to find the optimal solution. Note that the definition of a distance metric (and implicitly the 

neighbourhood function) affects the number of local optima, since, by definition, for a problem 

(X, f) and a neighbourhood function M, a solution x* is called locally optimal with respect to 

M, if  

f (x) ≤ f (x*) for all x אM(x).     (5) 

The locality of a landscape is given by how closely together (with respect to the distance d) 

solutions with similar fitness values are located (Rothlauf 2011). In general, the lower the 

distance, the higher the locality and the easier it is to find a global optimum, since better 

solutions are located closer together (Pitzer and Affenzeller 2012).  
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Another measure of locality was proposed by Jones and Forrest in 1995 where they proposed a 

fitness distance correlation coefficient. 

ிߩ =
ఙ()ఙ(ௗ)

      (6) 

Where  

=ௗܥ
ଵσ ( ݂ െ (݂))(݀,௧ െ ൫݀௧൯)ୀଵ     (7) 

with  ߪ(݂) and ߪ(݀௧) as the standard deviations for the fitness values, respectively the 

distances to the optimal solution,  f is the mean value for the fitness function, ݀௧ is the mean 

value for the distance to the optimal solution, ݂ the fitness value for solution i and finally ݀ ,௧ 
is the distance of solution i, to the optimal solution x*. 

The fitness-distance correlation coefficient, allows Jones and Forrest (1995) to distinguish 

between three classes of landscapes:  

a. Straightforward, for ߩி≤-0.15. This is the ideal case where the closer a solver gets to the 

global optimum, the higher the fitness and are roughly correspondent to “smooth” landscapes. 

NK problems where K≤3, fall in this category.  

b. Difficult -0.15<ߩி<0.15. There is limited correlation between the fitness difference and 

the distance to the optimal solution. This makes such optimization problems very hard to solve 

and renders the search heuristics to random search. According to Jones and Forrest (1995) as K 

increases over 3, NK landscapes quickly become uncorrelated and ߩி approaches 0.These are 

“rugged” landscapes, with limited or uncorrelated ruggedness.  

c. Misleading ߩி≥0.15. There is an inverse correlation between the fitness difference and the 

distance to the optimal solution. Thus, the solver is “drawn” away from the global optimum. 

According to Malan and Engelbrecht’s (2014) classifications, these would be “deceptive 

landscapes”. 

  

2.2.2. Deceptiveness 

Recent advances in biology point to the existence of higher-order epistatic interactions which 

generate multidimensional landscapes (Segre et al. 2005; Kondrashov et al. 2015). These 

interactions seem to be organized hierarchically in functional modules that interact with each 
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other (Segre et al. 2005, Jaimovich et al. 2010). This type of interaction structure is reminiscent 

of the hierarchical structure which has been argued to be an essential feature of organizational 

problems, at least when it comes to innovation problems (Pelikan et al. 2000; Gavetti 2005). In 

this context, hierarchy, is seen as the composition of systems out of subsystems with each 

subsystem in turn having its own hierarchy (Yu et al. 2009), until a certain level of fine grained 

modularity is achieved. This is a qualitatively different kind of ‘problem complexity’ (as 

compared to landscape ‘ruggedness’) and the one most likely to be encountered in real-life 

design problems (Pelikan et al. 2000; Martin 2001; Yu et al. 2009). Note however that 

hierarchical decomposition and hierarchical interdependence are different from the one-level 

interdependence, which is captured by NK-like landscapes - see also Marengo et al. (2000) for 

a more detailed account. The latter assumes that the task of solving a problem can be reduced to 

several low order modules that have intertwined contributions to the overall fitness. In 

hierarchical problems the interdependence (or interactions) between levels is also present and 

this obstructs single-level decomposition (Pelikan 2005). This description is also in line with 

Simon’s description of complexity (Simon 1962; 1996).   

Such problems are likely to generate deceptive landscapes, according to Malan and 

Engelbrecht’s (2014) classification, since they generate so-called hierarchical traps (Watson 

and Pollack 1999; Martin 2001; de Jong et al. 2005). The interactions between building blocks 

make hierarchical problems deceptive (i.e. misleading according to Jones and Forrest 1995) in 

Hamming space (at lower hierarchical levels), but fully non-deceptive at higher hierarchical 

levels (Iclanzan and Dumitrescu 2007) – i.e. at higher hierarchical levels (better problem 

representations), solvers are able to attain better solutions by making incremental changes. In 

biological terms: the lowest hierarchical level describes “how a mutation in a given gene affects 

the phenotypic consequence of another mutation and the highest level describes how altered 

functionality of a given module of genes affects the phenotypic consequence of altered 

functionality of another module.” (Segre et al. 2005: p. 81) 

One example of such function is illustrated in Figure 3.  

[Insert figure  3 here] 

Figure 3 shows the visualization of a hierarchical problem using a one-bit flip hill -climber (left) 

and a “chunking” algorithm that was tailored specifically for this problem (see Appendix 1 for 
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a description). Notice that the chunking landscape is ‘smoother’ than the one-bit-flip landscape. 

Since the H-XOR6 function has 2ே/ଶ  local optima for the one-bit flip hill -climber, the 

probability that a given point in the one-bit landscape is connected with a path to the global 

optimum is significantly lower (Figure 4) as compared to the chunking algorithm showing that 

this problem is ‘deceptive’ for a one-bit-hill -climber but not for an algorithm that can exploit 

the problem structure.  

[Insert figure 4 here] 

2.2.3. Neutrality  

So far we have only looked at the “smooth vs rugged” distinction and different means of 

capturing ruggedness. A different intuition about how evolutionary dynamics might be 

influenced by the underlying fitness function comes from models that consider the possibility 

that some solutions have equal fitness. This was fuelled by developments in molecular biology 

which have questioned the “rugged landscape” metaphor, in particular its explanation of 

speciation (Barnett 1997; Gavrilets 1999). This work was largely driven by the neutral theory 

of molecular evolution and in particular the observation that the majority of mutations at a 

molecular level do not affect the phenotype (Galván-López et al. 2011). The previous 

framework assumed that once a population became stuck in a suboptimal peak it could only 

escape it if the fitness function was changed (e.g. shifting balance theory) or via a long jump. 

The neutral theory of molecular evolution relies on the conjunction that there must be a series 

of fitness neutral mutations that would allow even organisms that were currently located in a 

suboptimal peak to “escape” and undergo further evolution.  

In an NKq (Newman and Engelhardt 1998) landscape, for a landscape L we define the neutral 

neighbours of x:  ܯ(x) = {x*N(x) |f(x) = f(x*)}.    (8) 

where fitness contributions are integers drawn from [0,q). The total fitness in this case is given 

by: 

f(x)= 
ଵே(ିଵ)

σ ேୀଵݔ    (9) 

                                                           
6 See Appendix for a detailed explanation of HXOR, 
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Figure 5 shows a 3D reduction for a 1 bit-flip hill -climber as well as the decimal representation 

used earlier to depict two neutral functions with N=8, K=1, q=2 and N=8, K=1, q=3, 

respectively. 

[Insert figure 5 around here] 

The left-hand side of the picture corresponds to the maximally neutral landscape and depicts a 

very simple, flat fitness landscape, without any local maxima. The right-hand side picture, 

corresponding to the q=3 neutral landscape, has a number of ridges of high fitness states, as 

well as valleys of low fitness states. Thus, neutral landscapes are not necessarily beneficial for 

adaptation, since, even for low values of K, a solver is likely to find himself trapped in these 

“stretches of lethal states” (Franke et al. 2011: p.4).  

A number of authors have introduced neutral extensions of the NK landscape and investigate 

how the new topology might influence the evolutionary processes (e.g. Barnett 1997; Newman 

and Engelhardt 1998; Lobo et al. 2004). The implementations vary in both details and 

conclusions regarding the influence of neutrality on the features of the landscape (Geard et al. 

2002), but they do conclusively show that neutrality is an important feature that influences 

search performance and is not captured by traditional measures of ruggedness (Pitzer and 

Affenzeller 2012), commonly used in NK studies. 

Figure 6 provides an illustration of how introducing neutrality can change the dynamics of 

adaptation. We compare the performance of a one-bit hill climber on an NK landscape (N=8, 

K=3) and a NKq landscape (N=8, K=3, q=47). Simulations show a higher success ration on the 

NKq landscape. The success ratio is defined by the ratio between the number of paths and the 

number of successful paths, and is thus a measure of the likelihood of finding the optimal 

solution. Simulations were conducted on 1000 different NK (and correspondingly 1000 

different NKq landscapes) and the difference was found to be significant (p=0.04) with an 

effect size r=0.1.  

[Insert figure  6 here] 

Thus, if neutrality is a feature that characterizes social science problems, caution should be 

used when characterizing the fitness landscape by relying on fitness distance correlations or 

                                                           
7 We purposely chose a value for q higher than the lowest possible (Q=2) which yields maximum neutrality. 



13 

 

K/N ratios (Galván-Lopez and Poli 2006). As Huyen et al. (1996) argue, a small value for the 

fitness distance correlation (i.e. -0.15<ߩி<0.15) that would normally be connected with a 

very rugged landscape, is not informative as to the ease/difficulty of finding the global 

optimum since local optima, when connected, are no longer local (Huynen et al. 1996). This is 

further explored by Lobo et al. (2004) who conclude that there is an interplay between the 

ruggedness and neutrality of the landscape. Their simulations suggest that the desirability of 

neutrality is contingent on the former. For instance, for rugged landscapes, neutrality is 

beneficial, but for smooth landscapes neutrality just makes adaptation slower.  

In consequence, the measures detailed in the previous section do not necessarily capture the 

relative ease or difficulty an adaptive solver would have on a landscape that does have neutral 

ridges.  

So far we have ignored issues pertaining to the search behaviour, or rather, following the NK 

literature, we have taken the one-bit flip as a reference. This assumption however isn’t as 

innocuous as it may seem. As such, the features described above (i.e. either metrics such as the 

number of local optima that a given problem has, or neutrality or deceptiveness) can only be 

defined with respect to a neighbourhood function M (Pitzer and Affenzeller 2012). We address 

these concerns in the following section.  

3. Search behaviours  

Simon (1956) describes agents of increasing intelligence: from the “simple-minded” organism 

that is driven by a basic stimulus response rule to a more complex, cognitively endowed, actor. 

Newell and Simon (1976) further introduce the hypothesis that in order for intelligent search to 

be better than random search, the space of solution has to “exhibit[s] at least some degree of 

order and pattern” (Newell and Simon 1976: p. 121). Since it is in the interplay between the 

structure of the problem and the search heuristic that is the focus in these models, it is not just 

the fitness function that is important, but also the particular search behaviours with which 

agents are endowed. Furthermore, since search behaviours are not as well defined in the NK 

model for organizational search as they are in the biological equivalents (i.e. selection, genetic 

drift, mutation and recombination cf. Huxley 2010) scholars need to build a different empirical 

foundation in what concerns search behaviours. Still, the most prevalent models in 

organizational theory seem closer to the ‘mindless particle’ end of the spectrum (cf. Winter et 
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al. 2007; Csaszar and Levinthal 2015), in what concerns an agent’s “ability to store and 

manipulate symbols” (Newell and Simon 1976: p.115).  

Several authors (Jones 1995; Frenken et al. 1999) have cautioned that the NK ruggedness is in 

fact a property of the landscape and not a property of the task environment, as defined above: 

the ruggedness is a property of L and not f or its domain. That is, ruggedness, as defined in 

Kauffman’s original model, is assumed to be given by a one bit mutation of the candidate 

solution (1993). However, as Frenken et al. (1999) point out, the assumption of one-bit 

flip  is of limited relevance in the context of human search behaviours, since such an 

one-bit conception does not fit human behaviour: human problem solvers are less 

likely to engage in small, incremental changes. Billinger et al. (2013) e.g. find that the 

average search distance is above two. As such, the ruggedness of the NK landscape 

does not allow for intuitions to be formed about problem hardness in general (i.e. the 

likelihood that a solver can find the optimal solution efficiently, provided that local search is 

not the only or the dominant search heuristic). For example, with a basic hill climbing 

technique (without random long jumps), a rugged NK landscape (K>0) is reduced to one single 

peak (likely a local optima) where the solver gets stuck. Thus, even simple heuristics as “hill 

climbing with long jumps” vastly improve the search process as they are able to cover the 

entire rugged landscape. In a problem-solving context the heuristic chosen is of outmost 

importance and the task environment’s statistical features (Kauffman 1993) do not preclude the 

existence of a powerful search heuristic that can in fact resolve to a flat, single-peaked 

landscape.  

3.1. Search in organizational theory 

Following the early studies, recent NK model extensions take a more nuanced view on what 

organizations do in their attempt to find solutions and thus focus on different search behaviours 

and their performance on landscapes of different complexity (as judged by the {N, K} pair). 

In the canonical NK model, the search heuristic is inspired by a simple evolutionary 

mechanism: adaptive mutation. This very simple search algorithm is actually very efficient. 

Hill -climbing is one of the most powerful domain-general search algorithms (Russel and 

Norvig 2010). It also provides earlier models with a straight-forward way of implementing 

bounded rationality assumptions. A solver endowed with such a simple heuristic is clearly light 
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years away from the all-knowing homo economicus, but this simple solver can still solve 

complex problems, such as identifying the optimal configuration of organizational routines 

(Levinthal 1997).   

Another type of search is where the solver is capable of evaluating all solutions in the one-bit 

mutation set and chooses the one that maximizes his performance (i.e. ‘offline search’ (Gavetti 

2005)). Other scholars have taken into account the fact that the assumption of bounded 

rationality is not violated if solvers are endowed with more intelligent heuristics (Winter et al. 

2007). For example, Gavetti and Levinthal (2000) allow agents to be directed in their search by 

representations of the search space that are attributed to them a priori, while Winter et al. 

(2007) assume that agents have exogenously attributed “preferred direction”. 

3.2. Alternative search behaviours  

Wright (1932) argues that the fundamental mechanism behind speciation must be a non-

adaptive one, i.e. it cannot be that hill climbing alone can account for the tremendous variety in 

species (Gavrilets 1999). 

Natural computing was quick to adopt biological mechanisms and adapt: stochastic hill- 

climbing, first-choice climbing and random-restart hill -climbing were the first natural 

successors that already showed a marked improvement over the performance of the canonical 

hill -climber. Although still extremely simple, these algorithms capture fundamental dynamics 

of adaptation. For example, Figure 7 illustrates the exploration/exploitation trade-off via the 

variance in performance for a random restart one-bit hill-climber on an NK landscape (N=8, 

K=3). Since such a landscape has a number of local optima, a hill-climber with zero probability 

of restarting would quickly climb up the nearest peak and the search would stop. The 

probability of identifying the optimal solution is strictly dependent on the number and size of 

basins of attraction8 for these local optima. For large numbers of local optima and large basins 

of attraction, the likelihood that the agent finds himself in the vicinity of the global optimum 

decreases and so does his probability of success. As the probability of restart increases, the 

solver also increases his chances of “landing” in the right part of the landscape. Evidently, a 

high probability of restart (in this case p>0.2) decreases performance since the agent engages 

                                                           
8 The areas around local optima that lead a hill-climbing algorithm directly to the local peak. 
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excessively in exploration (sampling the landscape) and not enough in exploitation (hill -

climbing).  

[Insert Figure 7 around here] 

Genetic algorithms (Holland 1992) are another class of algorithms that is inspired by 

evolutionary mechanisms. The major difference between the former and the latter was the use 

of genetic operators: in addition to selection and mutation, genetic algorithms rely on gene 

recombination as well (Affenzeller et al. 2009). Genetic algorithms are widely used in practice 

(e.g. Matthey et al. 2007) as are a number of various other computing tools ranging from fuzzy 

logic and belief calculus to machine learning like inductive logic programming (Konar 1999).  

However, as shown by Wolpert and Macready (1999), an algorithm’s average performance is 

determined by how much knowledge regarding the optimization function is incorporated into 

the search heuristic (the “No Free Lunch Theorem” for optimization). Thus, computer science 

has moved away from general purpose evolutionary algorithms with their limited knowledge of 

the problem space to algorithms that are designed specifically for the problem at hand. To 

illustrate this point, we compare the performance of three different algorithms on a hierarchical 

landscape (Figure 8): one-bit flip, and the same “chunking” algorithm that relies on 26 

operations that are derived by taking into account the particularities of the hierarchical problem 

(H-XOR, N=8) and random search.  

[Insert figure 8 here] 

We show how the chunking algorithm significantly outperforms both the hill -climber and a 

random search. Computational experiments also endorse this: algorithms that embed these 

principles out-perform traditional recombination (genetic algorithms) or local search, since a 

solver that uses an inappropriate problem decomposition effectively generates a rugged 

landscape (Cioffi -Revilla et al. 2012). 

Memory in computational agents 

Finally, most computational approaches discussed so far rely on agents which do not have 

memory9. The process of problem solving they describe is path dependent and solvers attempt 

                                                           
9 Note this is different from Gavetti (2005) who allows agents to have a ‘cognitive memory’, that is a set of different 
partial representations of the landscape.  
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to improve their current best performance, but, for example, in an eight-bit NK problem, at 

each time-step, a solver still has 255 (2଼-1) possible combinations to choose from. Naturally, 

the search heuristic implemented restricts the set of available moves, but the assumption is still 

strong and unjustified. The equivalent claim: ‘draws from an urn with or without replacement 

yield identical probabilities of success’ highlights the problem with disregarding memory.   

[In sert figure 9 around here] 

Figure 9 illustrates how the performance of a hill-climber changes as a function of the number 

of solutions he remembers. Note that memory is not ‘universal a recipe for success’, since 

remembering past success restricts the following moves that the hill-climber can make, which 

in turn means that the agent is more easily stuck in a suboptimal solution.  

It is beyond the scope of this paper to give a comprehensive overview of the history of natural 

computing. It should be noted that there is a great variety of increasingly sophisticated 

algorithms for solving optimization problems: for instance, in addition to algorithms inspired 

by evolutionary theories, computer science has also developed methods inspired by the human 

nervous system (artificial neural networks), the collective behaviour of groups of organisms 

(e.g. particle swarm optimization) or quantum physics (Rozenberg et al. 2011).  

Some of these algorithms are directly related to the previous discussion on features of fitness 

landscapes and rely on different measures of search performance such as e.g. search dispersion 

to adapt the search as it progresses (Maier et al. 2014). Others rely on more classical mappings 

of the search space, such as decision trees (Huys et al. 2012) or Bayesian models (Pelikan 

2005). These mappings are continuously adapted during the search process, using the 

information the agent gathers by interacting with the environment.  

To sum up, fuelled by the development of Artificial Intelligence, in computer science literature 

there has been a shift in focus from agents that can be thought of as ‘mindless particles’, to 

‘smarter’ agents, which, without being perfectly rational, are capable of observing or partially 

observing their environment and constructing “beliefs” that allow them to generate subsequent 

moves (Russel and Norvig 2010).  

4. Discussion  
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Based on the review of organizational theory, computer science and biology perspectives, in 

the following we try to outline future potential avenues for expanding the models as well as 

discuss potential implications. Although we acknowledge that models are to be thought of as 

useful simplifications of reality, in this section we highlight how previously made 

simplifications and NK legacy elements actually restrict our ability to rely on these models to 

further our understanding about human/organizational problem-solving dynamics.   

 

Modelling landscapes and complexity 

Irrespective of the NK model’s biological origins, there are no clear empirical specifications or 

constraints about how fitness landscapes should be conceptualized. In fact, Kauffman 

acknowledges that the contributions of individual alleles’ are drawn randomly from a uniform 

distribution, since the exact contribution of a gene to an organism’s fitness is not known 

(Kauffman 1993). The use of the NK canonical function has been justified in a similar manner 

by the fact that modellers are interested in how the evolutionary process “typically” unfolds 

(Rivkin 2000: p.828). However, as Jones and Forrest (1995) and Frenken et al. (1999) show, 

for K>3 NK landscapes become quickly uncorrelated. Given that organizational problems and 

innovation problems are rarely the real-life correspondent of either completely smooth (K=0) 

or completely uncorrelated landscapes, this questions whether NK functions are meaningful in 

modelling the dynamics of problem solving systems.   

While a mapping between the various components of a given solution and its performance (e.g. 

the modules of the educational app described in the introduction and its computational 

performance) is not trivial to make in an organizational setting, it can be even harder to see how 

it can be argued that such mapping is random and more importantly how the NK captures the 

interdependence structure of a typical organizational problem.  

Indeed a number of scholars have attempted more meaningful extensions of the NK model 

(Siggelkow and Rivkin 2003; Ethiraj and Levinthal 2004; Ethiraj et al. 2008). For example, 

acknowledging the problematic nature of the random interdependence structure in NK 

functions, Ethiraj and Levinthal (2004) impose a block near-modular design on top of the NK 

matrix and then allow solvers to optimize inside the modules as well as resort to recombinative 

practices. They show that erring on the side of too much decomposition is detrimental to search 

efficacy. However, Watson and Pollack (2005) caution that according to Simon’s definition of 

modularity, it is only on the short-term that modules are quasi-independent and on the contrary, 
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long-term dynamics should assume stronger inter-module interdependence. This kind of 

interdependence, they argue, is not captured by structural (as opposed to functional) models of 

modularity.  

One further limitation of these extensions is that the properties of these pseudo-NK landscapes 

are not as established as results for the canonical NK, so it is not obvious whether assumptions 

about the structure of the problem or assumptions about the search behaviours are driving the 

simulation results. For instance, recent work shows that imposing a block structure on the NK 

interactions qualitatively changes the structure of the landscape by actually diminishing the 

number of evolutionary paths towards the global maximum, under the SSWM10 condition 

(Schmiegelt and Krug 2014), while Hebbron et al. (2008) show that imposing a scale free 

structure on an NK landscape leads to longer adaptive walks and more clustering of optima in 

the landscape. In addition, all the extensions referenced in this study (e.g. Gavetti and Levinthal 

2000; Siggelkow and Rivkin 2003; Ethiraj and Levinthal 2004; Gavetti 2005; Ethiraj et al. 

2008) have as a basis the canonical form for the NK fitness function, which averages across 

individual fitness contributions. This, as Mckelvey et al. (2013) show, inevitably generates the 

same result: with the increase in N and K, the value for the fitness function converges towards 

the mean of the uniform distribution (0.5) and this skews the interpretation of the simulation 

findings. The particular way the fitness function is generated in the NK model is also what 

Szendro et al. (2013) argue makes such models less amendable to being able to capture 

different levels of epistatic effects.  

In biology, the empirical evidence towards the existence of multi-modal landscapes with 

numerous epistatic interactions continues to increase (Østman and Adami 2014) with scholars 

inquiring if it is reasonable to assume that adaption is taking place on a highly uncorrelated 

landscapes and if it is meaningful to assume there are no ‘neutral ridges’ (Gavrilets 1999) or 

hierarchical interdependence (Segre et al. 2005). With few exceptions (e.g. Fleming and 

Sorenson 2001; 2004), a similar, empirically grounded, discussion about how can we create 

meaningful landscapes for organizational problems seems to be missing.  

Paradoxically, we argue that one way forward, as suggested by current developments in 

computer science, is to revert to what Wright (1932) and Kauffman (1993) originally proposed: 

relying on a fitness landscape to first acquire a “rough” image of a problem class, instead of 

                                                           
10 Strong selection, weak mutation. 
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investigating specific instances (Pitzer and Affenzeller 2012, Malan and Engelbrecht 2014). 

Investigations into the topology of the fitness landscape would allow for a better understanding 

of the dynamic processes of adaptation in a similar vein to previous considerations: e.g. rugged 

landscapes are likely to trap solvers in suboptimal peaks, deceptive landscapes are likely to 

attract solvers towards suboptimal optima etc. Alongside the few methods introduced in this 

paper, a number of methods for landscape analysis have been comprehensively developed in 

this literature.  

Modelling search behaviours 

While previous paragraphs discuss issues related to how we conceptualize landscapes, we now 

turn to search behaviours. We have already discussed how several studies have questioned and 

attempted to expand the human problem solving models of search beyond its biological origins. 

Their approach is largely driven by theoretical concerns, but recent research is attempting to do 

the same driven by empirical results. This empirically driven approach allows for a better 

specification of search behaviours which in turn results in better models. The hill-climber most 

often used in management science is stochastic-restart hill climbing, rather than the canonical 

hill -climber. Before Billinger et al. (2013) few if any scholars spend time explaining some of 

the subsequent (seemingly innocuous) modelling decisions. However, as shown earlier (Figure 

7), the performance of a hill-climber with random restarts differs significantly from the 

performance of a hill-climber without random restarts.  

These results mirror a previous study conducted by Mason and Watts (2012). By comparing the 

performance of actual solvers and computational agents, Mason and Watts (2012) show that 

heterogeneity in terms of search behaviours has the potential to greatly influence the outcome 

of the search process. Whether relying on constructs such as attention control (Laureiro-

Martínez et al. 2015), intelligence (Steyvers et al. 2009) or cognitive styles (Kirton 1976), there 

is empirical evidence that there is a great heterogeneity when it comes to human search 

behaviours, but such heterogeneity is rarely taken into account in modelling approaches (Miller 

and Page 2009). This is also endorsed by empirical results which suggest that humans are 

capable of solving hard computational problems (Carruthers and Stege 2013), evidence to the 

fact that humans have far more sophisticated search strategies.  
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We have shown how assumptions about memory influence performance (Figure 8). Memory is 

not only important when it comes to restricting the search space (e.g. Gavetti 2005), but also as 

one way of advancing more plausible assumptions into modelling human problem-solving. 

Human problem solvers are not guided in their search merely by immediate feedback, but also 

by representations of the problem they form over time, via accumulated experience (Doll et al. 

2012). The modelling community has struggled to capture this via ‘preferred direction’ (Winter 

et al. 2007) or partial representations of the solution (Gavetti and Levinthal 2000, Gavetti 

2005), but the attempt is complicated by the fact that one assumes an agent has a problem 

representation before solving a problem. Where could this representation come from?  

One answer lies in the fact that the mental models or representations that solvers use to guide 

their search are themselves adaptive and subject to reinforcement learning (Miller and Page 

2009). It is then not only in the generation and evaluation of solutions that feedback loops are 

important (Bonabeau 2009), but the same mechanism can account for the emergence and 

evolution of problem representations as solvers engage in “imagining future events” (Schacter 

et al. 2007: p. 659). This approach insures that solvers do not have to start with an ex-ante map 

of the landscape, but gradually formulate it, or as Simon and Newell describe it (1972): they 

incorporate knowledge into their search heuristic. The computational solutions involve the 

implementation of machine learning techniques (Rand 2006) which can range from Bayesian 

algorithms (Pelikan et al. 2003), decision trees (Huys et al. 2012) and more recently deep 

learning (Mnih et al. 2015). Irrespective of the details, these methods have the potential to bring 

forward a middle way in modelling problem solving that is in keeping with the bounded 

rationality assumption, but at the same time allows more than “ant-like” behaviour (Winter et 

al. 2007) consistent with some of the theories regarding human cognition (Le 2013). The 

underlying idea is that while engaging in problem solving, as more information is available 

human solvers are able to detect and abstract essential features, in the same way visual pattern 

recognition works (Roland and Gulyás 1995). As a result of that, in structured environments 

subsequent variations or mutations are not random, but closer to what biologists call “facilitated 

variation”: generated new solutions are potentially useful (Parter et al. 2008: p.2). This 

however, is not possible in NK landscapes where fitness contributions are drawn randomly 

from an underlying distribution since, as Watson et al. (2011) argue the environment has to 

display a certain degree of regularity that the agents can exploit.  
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Conclusion 

While the simulation approach has gained attention in high-status outlets within organizational 

theory, we acknowledge and address the sceptical concerns still being raised about theoretical 

assumptions (Fioretti 2013) and the weak empirical grounding of these assumptions (Chang 

and Harrington 2006; Mason and Watts 2012). Much like in the original biological setup, the 

organizational literature has had simplistic assumptions about agent behaviour, embedded in a 

relatively undefined fitness landscape (Ganco and Hoetker 2008, McKelvey et al. 2013). 

However, unlike micro-biology, where evolutionary forces are well known (Huxley 2010), 

defining human search behaviours in this conceptual framework turns out to be elusive: how do 

we model and define what constitutes intelligent boundedly rational behaviour; for instance, do 

agents have memory and how good are they at interpreting the landscape? 

Given our limited understanding about the genotype-phenotype mapping in a technological 

setting (Solée et al. 2013), we suggest that the focus should not be on the statistical features of 

the landscape to be searched under the one-bit flip condition, but on how the interplay of search 

behaviours and the different natures of interdependence structures translates into problem 

solving performance. Only then we can focus on how the search can be best organized in such a 

way that solvers effortlessly find themselves in the vicinity of the optimal solution (cf. Felin 

and Zenger 2014).  

Additionally, we argue that any model of organizational learning should allow for more 

plausible (and if possible, empirically validated) assumptions regarding learning and expertise. 

For un-informed solvers, the fitness landscape will be extremely large and rugged, as they have 

to deal with a seemingly unconstrained search space (Zhang and Norman 1994). However, a 

problem representation works by effectively constraining the search space, generating a 

different set of possible solutions. Early investigations in the use of problem representations 

(Kotovsky and Simon 1990) show that knowledge about the landscape changes the structure of 

the landscape: “<the easy problem> problem” (Winter 2004)11. These ideas are not foreign to 

organizational literature which has a long tradition of looking at managerial decisions through 

the lenses of cognitive frames (or schemas) which seem to be the primary source of difficulty 

for organizations in turbulent environments (Kaplan 2008; Bingham and Kahl 2013). Still, most 

modelling approaches do not take into account this perspective about how cognitive frames 

change the search behavior and implicitly the landscape.  
                                                           
11 Learning and practice as well as context influence whether a problem is perceived as “easy” by a given solver. 
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We argue that moving away from “armchair speculations” Simon (1982) regarding human 

search behaviour and the nature of the problem is essential in these settings as seemingly 

innocuous assumptions can drastically change the problem solving performance. We further 

identify two potential avenues for future research: focusing on different landscape features and 

creating “smarter” agents by relying on the recent developments in computer science, both 

which, we argue, should be endorsed by empirical calibration and validation. 
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Figures and tables 

 

 

Figure 1. The same function (N=8, K=3) mapped with three different definitions of neighbourhood.  
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Figure 2. Landscape features adapted from Malan and Engelbrecht 2013. 
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Figure 3. Same function (HXOR N=8) mapped with three different definitions of neighbourhood.   
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Figure 4. Comparative performance of 1D, 1-bit flip and chunking. 
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Figure 5. The same function (N=8, K=3, q=4) mapped with two different definitions of 

neighbourhood.  
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Figure 6. Comparative performance of a 1-bit hill climber on two landscapes: N=8, K=3 and its 

neutral counterpart N=8, K=3, Q=4.  

 

Figure 7. Performance varying with restart probability for a stochastic hill-climber. 
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Figure 8. Performance of three different search algorithms on an HXOR landscape (N=8): 1-bit flip, 

chunking and random. 
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Figure 9. Performance of a 1-bit flip hill climber as a function of the number of remembered 

previous solutions.  
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Appendix 1 

H-XOR function 

The H-XOR function (Watson and Pollack 1999) is given by applying recursively an ‘exclusive or’ 

transformation onto the solution string where adjacent positions are considered starting with the 

leftmost. For instance, a {1010 0010} string becomes first {11 -1} and then {- -}. Once the 

transformation is completed, the payoff function rewards each non-null position in the hierarchy. 

Thus, a solution which contains an alternating pattern {1010 1010} would give a better score than a 

{1111 1111} since it will generate payoffs at lower levels of the hierarchy as well. The second level 

transformation for the first solution is {11 11} while for the second it is {-- --}. The maximum score 

is given by {1001 0110} or symmetrically by {0110 1001} (see a more extensive description in 

paper 1). 

Operations for the ‘chunking algorithm’  

Chunks 8 

Inverse all    e.g. 01111111->10000000 

Mirror all    e.g. 01111111->11111110 

 

Chunks 4 4 

Inverse the 1st chunk   e.g. 0111 1111->1000 1111 

Inverse the 2nd chunk   e.g. 0111 1111->0111 0000 

Mirror the 1st chunk   e.g. 0111 1111->1110 1111 

Mirror the 2nd chunk   e.g. 0111 1110->0111 0111 

Permute the 1st and 2nd chunk e.g. 0111 1111->1111 0111 

 

Chunks 3 2 3 

 Inverse the 1st chunk   e.g. 011 11 111->100 11 111 

Inverse the 2nd chunk   e.g. 011 11 111->011 00 111 

Inverse the 3rd chunk   e.g. 011 11 111->011 11 000     

Mirror the 1st chunk  e.g. 011 11 111->110 11 000 

Mirror the 2nd chunk  e.g. 011 10 111->011 01 000 

Mirror the 3rd chunk  e.g. 011 11 011->011 11 110 
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Permute the 1st and 3rd chunk e.g. 011 11 111->111 11 011 

    

Chunks 2 2 2 2 

Inverse the 1st chunk   e.g. 01 11 11 11->10 11 11 11 

Inverse the 2nd chunk   e.g. 01 11 11 11->01 00 11 11 

Inverse the 3rd chunk   e.g. 01 11 11 11->01 11 00 11 

Inverse the 4th chunk   e.g. 01 11 11 11->01 11 11 00 

Mirror the 1st chunk  e.g. 01 01 01 01->10 01 01 01 

Mirror the 2nd chunk  e.g. 01 01 01 01->01 10 01 01 

Mirror the 3rd chunk  e.g. 01 01 01 01->01 01 10 01     

Mirror the 4th chunk  e.g. 01 01 01 01->01 01 01 10     

Permute the 1st and 2nd chunk e.g. 01 11 11 11->11 01 11 11 

Permute the 1st and 4th chunk e.g. 01 11 11 11->11 11 11 01 

Permute the 2nd and 3rd chunk e.g. 11 01 11 11->11 11 01 11 

Permute the 3rd and 4th chunk e.g. 11 11 01 11->11 11 11 01 

 

Watson, R. A. and J. B. Pollack (1999). Hierarchically consistent test problems for genetic 

algorithms. Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress 

on, IEEE. 

 

 

 


