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Abstract
Using insights from computer science and biology, we argue that current computational modelling research
needs to address several fundamental issues in order to generate more meaningful and falsifiable
contributions. Based on comparative simulations and a new type of visualization, we address two key elements
that the traditional NK framework has relied on: a) how the NK captures the complexity of organizational
problems and b) search behaviours where, despite evidence, local search is often used as the dominant
problem solving strategy. We show that these two components are fundamentally intertwined and outline

implications for how to simulate organizational problems.
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Introduction

In the current literature on seartwo central issues are still left unresolved) in the
continuum from mindless particles to perfect rationality, howodelbounded rational sear
behaviour and 2) howo conceptualize the space of solutions (i.e. the interdependence
structure)n which search takes plag&orenson 2002, &ngandHarrington2006,Todd, Hills

et al.2012 Baumann 2015 In line with work from computer science (Jones 1¥%&er and
Affenzeller 2012), as well as the original fithess model formulation (Wright 19&23haow

how the two are fundamentally intertwined and in order to be able to create bettds wiode
problem solving, they muste addressed together.

Organizational theory haslang tradition of studying organizationsearch for solutions to
‘hard’ problems, i.e. problems where it is computationally impossible or yn&@lexpensive

to list and test all possible solutiofSimon 1956; Cohen et al. 1972)he prevalent way of
addressing individuabr organizationakearch behaviour and how to conceptualize the space of
solutions stems from early work on population genetics, namely the fitness |amdsodel
(Wright 1932). Within biology, by focusing on fitness interactions between geneshtWrig
framework allows for a link between lel@vel properties of genes and the highel patterns

of the dynamics ogvolution (Altenberg 1997). The model’'s most famous extensienNK
model (Kauffma 1993), explicitly models adaptive evolution as a “search in protein space”
(Kauffman 1993p. 37) which tries to find a maximum point for a chosen fithess function. This
approachhas grown outside the boundaries of population genetics literature amednap
series of scholars from computer scieneay.(Pitzer and Affenzeller 2012), organizational
theory €.g.Baumann and Siggelkow 2018)d physicge.g.Sarensert al. 2015).

How can problensolving be addressed in this frameworkfiagine trying tosolve an
innovation problemfor instancedesigning a new educational app. As any software developer
would tell you, there is no need to start from zemwvadays there are a number of qutefined
libraries you can use, which you can think of as interconnected modules. But htvesae
modules interconnected and how will this affect your chances of finding a gogadé=.

what does thetask environmentook like). Once youhave a working prototype, shoujeu

then just go through each module, one &tree, and try to make minor improvements? (i.e.



what organizational theory calls ‘local search’)haVif you get stuck- should youdiscard
everything and staggainfrom scratch? (i.e. ‘random longmps’).

Levinthal (1997) introducethe NK model in order to facilitatéhe formal modelling and
simulationof how the level of interdependence in an organization’s routines affects its long
term chances of finding the optimal configuration of such routines and thus survive in a
competitiveenvironmentTypically, the organizational literature is primarily focused on how
organizations search over the space of routines for combinations leading to thcrease
performance (e.g. Levinthal 1997), but the underlying intuition is the same. Bpgwedglicit
assumptions about individual or organizational behavend the environment in whictine
agentevolves, researchers could now simulate how such agents adapt over time. Basexl on thes
assumptions one can then map the complex dynamics of organizations being embeadded
adaptingto the competitiveenvironment (Levinthal 1997). This has enabled the field to go
beyond static explanations and model possible future trajectories of the aongmetitive
situation: e.g. organizations that are higklyupled (have a high interdependence between
routines), Levinthal (1997) argues, have a higher likelihood of failure in theofac®anging
environments. Later papers have developed this approach, addressing eiiffierent
interdependence structgréeg. Rivkin and Siggelkow 2003r how agents (be it individuals

or organizationskearchor adapt(Gavetti and Levinthal 2000; Gavetti and Levinthal 2001;
Winter, Cattani et al. 200 Baumann and Siggelkow 2018lartignoniet al 2015) Almost all

of this work, however, looks atither interdependencstructures(e.g. Ethiraj and Levinthal
2004) or search behaviours in isolation (e.g. Winter et al. 2007).

This paper attempts to addréksse issues to shed ltghn the challenges of a more systematic
apprach to modelling organizationahdindividual problem solving andffers atechnical and
theoretical comparative analysis of a numbesissfumptions about search strategies and fitness
landscapes. This analysis is substantiated by a novel (to the otgenaizéterature) type of
visualization that maps how different search strategies actually 'genheéiféerent landscapes,
rather than just searching in an a priori given sp&te. identify and exploréawo main
limitations with modelling problem solvinga the NK framework. First, recent research (He et
al. 2007)has showrthat wnless certain complexittheoretical assumptions are wrdnfpr hard
problems.a predictive measure of problem hardness cannot exist. This result mirrors a number

of red flags already raised in the organizational literature (e.g. Frezikal. 1999) regarding

1 P=NP respectivelpPP= NP. See He et a(2007) for an elaboration.



whether the NK is indeed ‘@uneable complexity landscdpand calls for a more elaborated
and systematidiscussion regardinthe kind of problems that can be modelled tha NK
framework Secongdwe argue thathe NK frameworkhas several limitations with respect to
modelling more plausible search behaviours, in particular due to partiassamptions
regarding the fitnesfunction.

In the following we legin for historical reasons, to review the use of fitness landscapes in
section 2 and search behaviours in section 3. Based on these insights from @wgahizat
theory and biology we discuss the implications for organizatitmadry of the presented
visualizations and analysis of simulations in section 4.

2. Fitness landscapes

There are two main elements in the fitness landscape model that need to be specified for
problem solving processes to be captured: the task structuréh@.@roblem that is to be
solved) and the search behaviour (i.e. how problem solving unfolds). In order to discuss the
difference between the “objectively defined task” (Simon and Newell:197148) and the
fitness landscapeavhich is the backbone of tié¢K simulations we start by providing short

formal definition of fithess landscapeshe fitness landscape is in effect what théveso
subjectively perceives othe problem spacgSimon and Newell 1971We start by providing
anoverview of the mairelements that describe an NK landscape. We caution that although we

attempt to discuss the two issues in sequence, a certain amount of overlap is @evitabl

2.1.NK landscapes

In an optimization problem, a solution to a given problem is represented as N w&ctor of
(traditionally) binary variablés The quality of a solution, in keeping with the biological
inspiration of the model, is given byfaness functioh(i.e. anobjective function).

Let X be the space of all possible solutions to a problem. In a maximizing optimization
problent(i.e. a problem where the goal is to find the solution for which the funttias the

highest value), for a functidipa solution xtl X is a global optimum if

2 The model can be easily and without loss of generality extended to lgrgebels.



f(x*)>f(x), for any xZ/ X. (1)
where all binary variables are in their optimal position.

The landscape is a mapping between solutions and fitness values that takes intothecount
connectivity between solutions. In order to defec@nectedneséor pre-defined similarity
between solutionsve need tospecifya distance metricWithout adefinition of a metric one
cannotdefine a fitness landscape as Wright (1932) conceptualized it. As such, for any type of
problem, a fitness landscape (X, f, d consists of allx / X, an objective functiorf that
measures the quality of each solution and a distaneasured. Following Pitzer and

Affenzeller(2012)we can defina distance metrias
d: X x X7 1], such that d(s,t)>0,
d(s,t)=014 s=t, d(s,t)<d(s,u)+d(u,t), /s,t,ul/ X. (2)

Subsequentlythe structure of the search spéRethlauf 2011; Pitzer and Affenzeller 2018)
defined vialie € -neighbourhood of:

MX)={n|neX;nx;dx;n) <e}. (3)
The neighbourhood function thus defines the set of all solutions that are differentérémadl
solution and within an ¢ radius of it, as measured by the chosen distance méscgiven by
Equation 2) Thus,thefitness landscapgsshape (or topologyis given only in conjunction with
a given neighbourhood functiqgdones 1995)the fitness landscapé&)(is not the same as the
fitness functionf( andit is likely that for any functiori there can be a number of landscapes
with vastly different propeies (Maier et al. 2014)
To illustrate this pointFigure 1 shows an example of the same function mapped onto three
different landscapes using three different expressions for the neighbourhooadrfuncti

[Insert figure 1 around here]

We used a dimensionality reduction method that transforms high dimensional data to low
dimensional representations while preserving -pgse similarities (Van der Maaten and
Hinton 2008)to create 3D visualizations of the medimensional landscapeTheillustration

on the left depicts one NK landseagenerated by relying on a ebi-flip (i.e. any two

3 Conversely, in a minimizing optimization problem[IxX is a global optimum, if(x*)<f(x) for any x X.

* Given the fact that theSNE (tdistibuted stochastic neighbour embedding) algorithm is stochastic, @sNsth
fitness function, it should be noted that this is one possible illustrationeopossible NK landscape with N=8,
K=3. The illustration is not a general result for all NK langssaof N=8 and K=3.



solutions are considered similar if the Hamming distabegween them is exactly one), while
the one on the right depicts an NK landscape generatedrdbying on atwo-bit flip
neighbourhood structuré€. any two solutions are considered similar if the Hamming distance
between them is exactlyvo). Both landscapes have the same underlying fithess function,
generated for an NK with N=8 and K=3. Finally, the lower part of the graphic sheveame

NK function mappedyy converting the bit of strings to the decimal syst{eim @stman and
Adami 2014 ard solutions are considered to Isemilar if their decimal representation
transformations are consecutive (i.e. 10011001 is transformed into 153 and its natural
neighbours are 151 (10011000) and 154 (100110T0¥.decimal representation allows for a
up-ront intuition regarding the distribution of highnesspeaks in the in the solution space
(@stman and Adami 2014

This visudization is telling in two ways. Firstjote that the twdbit-flip generates two different
landscapes. €pending on the starting point, a subset of solutionstisonnected in the graph
Similarly if one attempts to travezs sequence of consem& numbers with increments of 2
one generates twdlistinct and unconnected subsets: odd and even numbleus, the
definition of the neighbourhood function caffectively reduce (relative to the entire search
space) the size of the landscafecond,the heaimap preserves information regarding the
distribution of fithess scores.n® can assess (qualitatively in this case) the relative ease or
difficulty of navigating towards the lighter colourareasin atraditional NK fashion The
three neighbourhood representations yield three different landscape togoalegiemoother
gradients sut as the lefhand sile of the twebit flip mean that it would be easy fanagent to
find the global optimum, whilépatchiet surfaces translate into a lower likelihood of success
such as the onreit and the ight-hand sidelandscape generated by theo-bit flip.
Equivalently, in the 2D decimal representation, one can assess the difficultydiofgfithe
global optimum (the highest fitnesalue), by looking at thehape of the generated curie
the 2D case, since the decimal representation is arbitrary,dé@mal landscape is very

“rugged”, thus a solver will likely get stuck in a suboptimal solution.
K/N ratios or epistatic interactions

While in the previous section we have shown how landscapes are defined and how the topology

of the landscape changes asesault of the definition of the neighbourhood function, we now

5 The number of variables which have different values.



turn tohow scholars have attempted describeor more formallycapturethe ruggedness of a

landscapewithin the NK framework.

In the NK model, a solution to a given problem is represeased ste N vector of binary
variablesandthe fitness functiori is the average across all contributions in the genome. The

details of how these contributions are computed are explained below.
1
)= T2, x, (@)

The parameter K gives the numberiateractions betweethe N alleles (i.e. variableslor
K=0, each contribution can take only two possible values. The single alleléutatrs are
independent and identically distributed random variables. Each allele has one dtase tha
preferable tdhe otheyindependently of the values of the other variables. The global optimum
is the state where all alleles are in the individual optimal position. The global apitaru be

reached from any initial configuration.

For K>0 the contribution of each allele depends on the position of a number of othdeX alle
The choice of which alleles are interdependent is at the latitude of the enptetla common
assumption is that neighbouring solutions influence each other. For exéonles4, K=1, a

solver cannot determine the optimal position for the first site in theisn, but has to compute

all four possible combinations for the first and second site: {00, 01, 11, 10} and then choose the
maximizing sequence. For K=Nthe entire sequence appearsh@ argument of each single
gene contribution and each step replaces the fitness with a different randdrerntine
interdependence between alleles (or solution components) is knovepisiasis a term
borrowed from biology where it denotes the fact tha expression of a gene is altered by the

presence of another.

Early organizationalstudies relying on the NK model follow on the path proposed by
Kauffman (1993) and study how the attributes of the search space influence the pragensity
finding the optimal solution by aane-bitflip hill climber (e.g. Levinthal 1997; Ethiraj and
Levinthal 2004). Indeed, part of the NK model’'s popularity in organizational literataue to
the fact that it allowthe investigation of different problem difficulti€afuah and Tucci 2012),
via the K/N ratio, or the level of epistatic interactiofWeise et al. 2009) Epistasis is
equivalent to the noehnearity of a problem or how well a problem can be decomposed into

sub-problemgRothlauf 2011; Pitzer and Affenzeller 201%) other words epistasis gives a



measure of signal to noise in what concerns the evaluations of the fithassnfu@onsider the

N=4, K=1 example used before. A solver with {x=(0,0,0,1), f(x)=0.56}, might move to
{x*=(0,0,0,0), f(x*)=0.58, even though {y=(0,0,1,1), f(%0.72}. The fact that the optimal
setting for the fourth allele is {1} is obscured by the epistatic interactitinits neighbour on

the third position. In the light switch example, it is naturally easier to déteabptimal
configurations for the light switches provided they control distinct parteeofighting in the

room. That is, only for K=0, the contribution of each allele is independent and a solver can

easily detect the optimal configuratioasd epistasis is 0.
2.21 andscape features

Despite the fact that the notion of epistatic interactions, as outlined above, amaytr
important within organizational theory, its use in quantifying the hardness abéepr has
often been criticizedMason 1995; Naudts and Verschoren 1980 particular due to the
difficulty of identifying measures of epistasis that have enough presglippwer (Pitzer and
Affenzeller 2012) There are several known limitations to using epistasis measupEexass
for problem complexity. First, epistatic interactions can be both positive gjadivee Whether
an interaction effect between two alleles is pesitr negativédnas a significant impact on the
difficulty of a problem, but epistasis measufesy. epistasis variance or corredali cannot
capture this distinction (Naudts and Kallel 2008gcond,empirical evidence suggests that
epistatic interactions can @ar at several level§i.e. there are hierarchical interdependence
structuresiand this has consequendes the longterm d/namics of the systerfSzendro et al
2013).Thus, what is important is not acknowledging that a prolflasepistatic interactions,

but rather identifying the nature of those interactions.

Paralleling this trend,ecent years have seen considerable development when it comes to the
study of fitness landscapes (Pitzer and Affenzeller 2012; Malan and Engel2@t3;
McClymont 2013 gstman and Adanf2014)with a focus shift from characterizingoblem
hardnesqvia ruggedness measurds)characterizinditness landscapes order todetermine

the appropriate algorithifMcClymont 2013) The shift is due to the fact thiitihess landscape
analysis allows for “a deeper understanding of a whole problem classgr(BndAffenzeller

2012: p.3) rather than a specific problem instanCarrent researchhus aimsat identifying
relevant features that can describe a fitness landscapthat have known properties with
respect toproblemsolving difficulty (Malan and Engellecht 2014) Malan and Engelbrecht



(2014) identy three such features as potentially predictive of performanoggedness
neutrality and deceptiveness (Figure 2).

In keeping with the organizational theory approach, where thdiomd!-climbing algorithm
is the dominant search behaviour,the following we describe how these features can affect
the likelihood of finding the optimal solution for a classiwe-bithill-climbing algorithm, but

theyare not limited to thisearch heuristic.
[Insert figure 2 around here]
2.2.1.  Landscape ruggedness: modality and locality measures

In the previous section we have addressed pdar research hasisedK or K/N ratios as
measures of landscape ruggedness or problem complexiged Kauffman (1993 has shown
thatgiventhe onebit flip assumption, the ruggedness of an NK landscapaptired by the K
parameterHowever, although it is clear that highly epistatic landscapes are hardcdb, gear
not clear how much epistasis needed to make problem difficult” (Jones 1995p. 134).
Thus, in the following, we present a number of alternative measures trecadgndscape

ruggedness.

In computer science,faequently used measure of landscape ruggedness is the number of local
maxima, or the modi&y of a landscapelhe modalityof a given landscape often computed
relative to the size of the fithess landscape: the higher the density of suahingdeapiima, the
more complex the probleme. the higher the likelihood that a solver will be stuck and unable
to find the optimal solutionNote that the definition of a distance metric (and implicitly the
neighbourhood function) ats the number of local optima, since, by definition, for a problem
(X, f) and aneighbourhood functioM, a solution x* is called locally optimatith respect to
M, if

f(x) <f(x*) forallx eM(x). (5)
The locality of a landscapés given by how closely together (with respect to the distaijce
solutions with similar fitness valueme located(Rothlauf 2011) In general, e lower the

distance, the higher the locality and the easier it is to find a global optiniuee, Isetter

solutions are located closer together (Pitzer and Affenzeller 2012).



Another measure of locality was proposed by Jones and ForiE395where they proposka
fitnessdistance correlatiortoefficient

—_ Ca
PFDC = S ot ©)

Where

Cra=— X1 (fi = () (iope — (dope))  (7)

with  o(f) anda(d,,.) asthe standard deviations for the fitness values, respectively the
distances to the optimal solutiofjs the mean value for the fitness functidp,, is the mean
value for the distance to the optimal solutifirthe fitness value for solutiarand finallyd; ;¢

is the distance of solutianto the optimal solution x*.

The fitnessdistance correlation coefficient, allsnlones and Forre4l995) to distinguish
between three classes of landscapes:

a. Straightforward, fopzp-<-0.15. This is the ideal case where the closer a solver gets to the
global optimum, the higher the fitness and are roughly correspondent to “smooth” landscapes
NK problems where K<3, fall in this category.

b. Difficult -0.15<p-<0.15. There islimited correlation between the fitness difference and
the distance to the optimal solution. This makes such optimization problems very haxeto sol
and renders the search heuristics to random search. According to Jones and Forreass (1995)
increasesver 3, NK landscapes quickly become uncorrelatedpapg approaches These are
“rugged” landscapes, with limited or uncorrelated ruggedness.

c. Misleadingpgp->0.15. There is an inverse correlation between the fitness difference and the
distance to the optimal solution. Thus, the solver is “drasmmay from the global optimum.
According to Malan andengelbrechs (2014) classifications, these would be “deceptive

landscapes”.

2.2.2. Deceptiveness

Recent advances in biologyint tothe existence olfigherorder epistatic interactions which
generate multidimensional landscapes (Segre et al.; 20@%drashov et al. 2015)These

interactions seem to be organized hierarchically in functional modulestaedat with each



other (Segre et al. 2003aimovichet al. 201). This type of interaction structure is reminiscent
of the hierarchical structure which has been argued to be an essential feature matiogahi
problems, at least when it comes to innovation problgreskanet al. 2000 Gavetti 200%. In
this context,hierarchy,is seen as the composition of systems out of subsygsigtin each
subsystem in turn having its own hierarchy (Yu et al. 2009! a certain level of fine grained
modularity is achieved. This is a qualitatively different kind of ‘problem deriy’ (as
compared tdandscap€ruggednesy’ and the one most likely to be encountenedaatlife
design problems (Pelikan et al. 2000; Martin 2001; Yu et al. 2008 however that
hierarchical decomposition and hierarchical interdependence are differenthieoamelevel
interdependencgeavhichis captured by NKlike landscapes see ado Marengo et a(2000)for

a more detailed accounthe latter assumehat the task of solving a problem can be reduced to
several low order modules that have intertwined contributions to the overall fitness.
hierarchical problems the interdependefmeinteractionspetweenevels is also present and
this obstructs singlevel decomposition (Pelikan 2003)his description is also in line with

Simon’s description of complexity (Simon 1962; 1996).

Such problems are likely to generatkeceptive landscapes, according to Malan and
Engelbrechs (2014) classification, since they generage-called hierarchical trap@/Natson

and Pollack 1999; Martin 2001; de Jogigal. 2005) The interactions between building blocks
makehierarchical problems dedage (i.e. misleading according thones and Forrest 199
Hamming space (at lower hierarchical levels), but fully-deneptive at higher hierarchical
levels (Iclanzan and Dumitrescu 2004 i.e. at higher hierarchical levels (better problem
represent#ons), solvers are able to attain better solutions by making incrementejeshia
biological terms: the lowest hierarchical level describes “how a mutation wvea gene affects

the phenotypic consequence of another mutation and the highest les@aetefiow altered
functionality of a given module of genes affects the phenotypic consequence ofl altere

functionality of another module.” (Segre et al. 2005: p. 81)
One example of such function is illustrated in Figure 3.
[Insert figure 3 here]

Figure3 shows the visualization of a hierarchical problem using aidrilp hill -climber (left)

and a “chunking” algorithm that was tailored specifically for this problem Aggpendix 1 for
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a description)Notice that he chunking landscape ‘@noother’thanthe one-bitflip landscape.
Since the HXOR® function has2¥/2 local optima for theonebit flip hill-climber, the
probability that a given point in thenebit landscape is connected with a path to the global
optimumis significantly lower (Figure Yas compared to the chunking algoritlstmowing that
this problem is ‘deceptive’ for a o#®t-hill-climber but not for an algorithm that can exploit

the problem structure.
[Insert figure 4 here]
2.2.3.  Neutrality

So far we have only looked #te “smooth vsrugged distinction and differentmeansof
capturing ruggedness A different intuition about how evolutionary dynamics might be
influencedby the underlying fitness functiocomesfrom models thatonsiderthe possibility

that some solutions hawegjual fithessThis was fuelled by @velopments in molecular biology
which have questioned the “rugged landscape” metagpimomparticular its explanain of
speciation (Barnett 199Gavrilets 1999 This work was largely driven bihe neutral theory

of molecularevolutionand in particular the observation that the majority of mutations at a
molecular level do not affect the phenotyf@alvanLépez et al. 2011). The previous
framework assumed that once a population became stuck in a suboptimal peak it could only
egcape it if the fitness function was changed (e.g. shifting balanceyjhmovia a long jump.
The neutral theory of molecular evolution relies on the conjuntiianthere must be a series
of fitness neutral mutations that would allow even organismswbeg currently located in a

suboptimal peak toeéscap&and undergo further evolution.

In anNKqg (Newman and Engelhardt 199@ndscapefor a landscapk we define theneutral

neighbours of x:
My, (x) = {x* IN(x) [f(x) = f(x*)}. (8)

wherefitnesscontributions are integers drawn from [0,q). The total fitness in this caseeis g

by:

100= 5o 2 x (©)

® See Appendix for a detailed explanation of HXOR,
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Figure5 showsa 3D reduction for a 1 bitip hill -climber as well as the decimal representation
used earlier todepict two neutrd functions with N=8, K=1, q=2 and N=8, K=1, =3,

respectively.
[Insert figure 5 around here]

The lefthand side of the picture corresponds to the maximally neutral landscape ansl @epict
very simple flat fitness landscape, without any local maxima. The +igind side picture,
corresponding to the q=3 neutral landscape, has a number of ridges of high fithesastates
well as valleys of low fitness states. Thus, neutral landscapes are noangcbsseficial for
adaptation, since, even for low values of K, a solver is likely to find himself trappedsin the
“stretches of lethal states” (Franke et al. 2q1.4).

A number of authorbaveintroduced neutraéxtensions of the NK landscaped invesgate

how the new topology might influence the evolutiongrgcessesge.g.Barnett 1997; Newman

and Engelhardt 1998; Lobo et al. 2004). The implementations vary in both details and
conclusions regarding the influence of neutrality on the features of the dpedSeard etl.

2002) but they do conclusively show that neutrality is an important feature that inffluence
search performancand is not captured by traditional measures of rugged{s=zer and

Affenzeller 2012), commonly used in NK studies.

Figure 6 provides a illustration of how introducing neutrality can change the dynamics of
adaptation. We compare the performance of elnhill climber onan NK landscape (N=8,
K=3) and aNKg landscape (N=8, K=3, ¢t). Simulations show a higher success ration on the
NK(q landscape. e succesgatio isdefined by the ratio between the number of paths and the
number of successful pathandis thus a measure dhe likelihood of finding the optimal
solution Simulations were conducted on 1000 different NK (and correspondingly 1000
different NKqg landscapg and the difference was found to be significant (p=0.04) with an

effect size r=0.1.
[Insert figure 6 here]

Thus, T neutrality is a feature that characterizes social scignoblems caution should be

used when characterizing the fitness landscape by relyirfgness distance correlations or

"We purposely chose a value for q higher than the lowest possible (Q=2) yidils maximum neutrality.

12



K/N ratios(GalvanLopez and Poli 2006 As Huyen et al(1996) arguea small value for the
fithess distance correlationd. -0.159:,,<0.15 that would normally be connected with a
very rugged landscape, is not informative as to the ease/difficulty of fintiemgglobal
optimum since loal optimawhen connectedare no longer locaHuynen et al. 1996 This is
further exploredby Lobo et al (2004)who conclude that there is an interplay between the
ruggedness and neutrality of the landscape. Their simulations stiggeste desirability of
neutrality is contingent on the formefFor instance, for rugged landscapes, neutrality is

beneficial, but for smooth landscapes neutrality just makes adaptation slower.

In consequencethe measuredetailed in the previous section do not necessarily capture the
relative ease or difficulty an adaptive solver would have on a landscape thatweeasehtral

ridges.

So far we have ignored issues pertaining to the search behaviour, or rather, folleviig t
literature,we have taken thenebit flip as a reference. This assumption however isn't as
innocuous as it may seem. As suitle features described above (i.e. either metrics such as the
number of local optimahata given problem hagr neutrality or deceptivensy can only be
defined with respect to a neighbourhood functibiiPitzer and Affenzeller 2012yVe address

these concerns in the following section.
3. Search behaviours

Simon (1956)describes agents of increasing intelligence: from the “shmpteled” organism
that is driven by a basic stimulus response rule to a more complex, cognitivelyeeh@dator.
Newell and Simon (1976) further introduce the hypothesis that in order fdigem¢lsearch to
be better than random search, the space of solution has to “exhibit[s] at least goeeeotle
order and pattern” (Newell and Simon 1976: p. 1&ijce it is in the interplay between the
structure of the problem and the search heurig&t is the focus in these models, it is not just
the fitness function that is important, but also the particular search behavidhrsviich
agents are endowed. Furthermore, since search behaviours are not as well defie@dKin t
model for organizational search as they are in the biological equivalents (ictioselgenetic
drift, mutation and recombination cf. Huxley 2010) scholars need to build a differpirtoain
foundation in what concerns search behaviours. Still, the most prevalent models in

organizational theory seem closer to th@ndless particfeend of the spectrurcf. Winter et

13



al. 2007;Csaszar and Levinthal 2015), in what concerns an agent’s “ability to store and
manipulate symbols(Newell and Simon 1976: p.115).

Several authorgJanes 1995; Frenken et al. 1998ve cautioned that the NK ruggednisss

fact a property of the landscape and not a property of the task environmentned dbbve:
the ruggedness is a propertylofand notf or its domain. That is, ruggedness, as defined in
Kauffman’s original model, is assumed to be given by a one bit mutation of the atendid
solution 993).However, as Frenkeet al.(1999)point out, the assumption of cié

flip is of limited relevance in the context of human sedyehaviours, since such an
onebit conception does not fit human behaviour: human problem solveresare
likely to engage in small, incremental chandg&linger et al.(2013)e.g.find that the
average search distance is above.t¥e such, the ruggedness of the NK landscape
doesnot allow for intuitions to be formed about problem hardnesgeneral (i.e. the
likelihood that a solver can find the optimal solution efficiently, provitted local search is
not the only or the domant search heuristic). For example, with a basic hill climbing
technique (without random long jumps), a rugged NK landscap@)(is reduced tone single
peak (likely a local optima) where the solver gets stuck. Thus, even simple hewsstiaill
climbing with long jumps” vastly improve the search process as they are abdeetote
entire rugged landscape. b problemsolving context theheuristic chosenis of outmost
importance and the task environnisrtatistical feature@Kauffman 1993)o not preclude the
existence of a powerful search heuristic that can in fact resolve to a flat,-z@adied

landscape.
3.1. Search in organizational treory

Following the early studies, recent NK model extensions take a more nuancednvighat
organizations do in their attempt to find solutions and thus focus on different searcioinsha

and their performance on landscapes of different complexity (as judged by thé gy K

In the canonical NK model, the search heuristic is inspired by a simple ewaluyti
mechanism: adaptive mutation. This very simple search algorithm is actuallyeffiergnt.
Hill -climbing is one of the most powerful domagmeral search algorithms (Russel and
Norvig 2010). It also provideearlier modelswith a straightforward way of implementing

bounded rationality assumptions. A solver endowed with such a simple heuristiclisligbar
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years away from the aknowing homo economicysbut this simple solver can still solve
complex problems, such as identifying the optimal configuration of organizationthes
(Levinthal 1997).

Another type of search is where the solver is capable of evaluating all soluatitthesone-bit
mutation set and choasthe one that maximizes his performance (o#line search’(Gavetti
2005)). Other scholars have taken into account the fact that the assumption of bounded
rationality is not violated if solvers are endowed with morelligent heuristic{Winter et al.

2007) For example, Gavetti and Levinti{@0D00)allow agents to be directed in their search by
representations of the search space that are attributed to them a priori, witée &Yial.

(2007) assume that agents have exogdp@atsibuted‘preferred direction”.
3.2. Alternative search behaviours

Wright (1932) argues that the fundamental mechanism behind speciation must be a non
adaptive one, i.e. it cannot be that hill climbing alone can account for the tremendoysitvariet
species (Gavrilets 1999).

Natural computing was quick to adopt biological mechanisms and adapt: stochastic hill
climbing, firstchoice climbing and randomestart hill-climbing were the first natural
successors that already showed a marked improvemnenthe performance of the canonical
hill-climber. Although still extremely simple, these algorithms capture fundamental dymamic
of adaptation. For examplejgare 7 illustrates thexploration/exploitation tradeff via the
variance in performance forrandom restaronebit hill-climber on an NK landscape (N=8,
K=3). Since sucla landscape has a number ofdbaptima, a hiliclimber with zero probability

of restarting would quickly climb up the nearest peak and the search would stop. The
probability of identifying the optimal solution is strictly dependent on the number aadfi
basins of attractichfor these local optima. For large numbers of local optima and large basins
of attraction, the likelihoodhatthe agent finds himself in the vicinity of the global optimum
decreases and so does his probability of success. As the probability of restasescithe
solver also increases his chances of “landing” in the right part of the landseagently, a

high probability of restart (in this case (02) decreases performance since the agent engages

8 The areas arouridcal optima that lead a hidllimbing algorithm directly to the local peak.
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excessively in exploration (sampling the landscape) and not enough in exploftatien
climbing).

[Insert Figure 7 around here]

Genetic algorithms(Holland 1992) are another class of algorithms thad inspired by
evolutionary mechanisms. The major difference between the former atattdr was the use

of genetic operators: in addition to selection and mutation, genetic algorithmsnrgene
recombination as we(Affenzeller et al. 2009)Geneticalgorithms are widely used in practice
(e.g.Matthey et al. 2007) as are a number of various other computing tools ranging from fuzzy
logic and belief calculus to machine learning like inductive logic program(Kiogar 1999).

However, as shown bwolpertand Macready (1999an algorithm’s average performance is
determined by how much knowledge regarding the optimization function is incorporated into
the search heuristic (the “No Free Lunch Theorem” for optimization). Thus, cansgigace

has moved awafyom general purpose evolutionary algorithms with their limited knowledge of
the problem spac® algorithms that are designed specifically for the problem at hemd.
illustrate thispoint,we comparehe performance of thradifferent algorithms om hierarchical
landscape(Figure 8): onebit flip, and the samé‘chunking” algorithm that relies on 26
operationghatarederived bytaking into account the particularities of the hierarchical problem
(H-XOR, N=8)and random search.

[Insert figure 8 here]

We show how the chunking algorithm significantly outperforms bothhtheclimber anda
random searchComputational experiments also endorse this: algorithms that embed these
principles ouperform traditional recombinatiorgénetic algorithmsor local search, since a
solver that uses an inappropriate problem decomposition effectively generategea
landscapé€Cioffi-Revilla et al. 2012).

Memory in computational agents

Finally, most computational approaches discussed so far rely on agents which do not have

memory. The process of problem solving they describe is path dependent and solvers attempt

° Note this is different from Gavetti (2005) who allows agents to have aitb@gmemory’, that is a set of different
partial representations of the landscape.
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to improve their current best performance, but, for example, ieigittbit NK problem, at
each timestep, a solver still has 253%1) possible combinations to choose from. Naturally,
the search heuristic implemented restricts the set of available moves, bsguhgton is still
strong and unjustified. The equivalent clafdraws from an urn with or without replacement

yield identical probabilities osuccesshighlights the problem with disregarding memory.
[Insert figure 9around here]

Figure 9illustrates how the performance of a falimber changeas a function of the number
of solutions he remembers. Note that memory is not ‘universal a recipedoess’, since
remembering past success restricts the following mthatshe hill-climber can make, which

in turn means that the agent is more eastiligk in a suboptimal solution.

It is beyond the scope of this paper to give a comprehensive overview of the histonyralf nat
computing. It should be noted that there is a great variety of increasingly s@badstic
algorithms for solving optimizatioproblems:for instance,jn addition to algorithms inspired
by evolutionary theories, computer sciet@salso developed methods inspired by the human
nervous system (artificial neural networks), the collective behaviour of groupsgyafisms

(e.g. partite swarm optimization) or quantum physics (Rozenberg et al. 2011).

Some of these algorithms are directly related to the previous discussion onsfeafiiress
landscapes and rely aifferent measures of search performance such as e.g. search aspersi
to adapt the search agitogresses(Maier et al. 2014)Others rely on more classical mappings
of the search space, such as decision tfdeys et al. 2012pr Bayesian modelgPelikan
2005) These mappings are continupusadapted during the search process, using the

information the agent gathers by interacting with the environment.

To sum up, fuelled by the development of Artificial Intelligerinegomputer science literature
there has been a shift in focus from agehtg tan be thought of amindless particlésto
‘smarter agents, which, without being perfectly rational, are capable of observing @ilparti
observing their environment and constructing “beliefs” that allow them to gersrasequent

moves(Russel ad Norvig 2010).

4. Discussion
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Based on the review ofrganizational theorycomputer sciencand biologyperspectives, in
the following we try to outline future potential avenues for expanding the models lagswel
discuss potential implication&lthough we acknowledge that models are to be thought of as
useful simplifications of reality, in thissection we highlight how previously made
simplificationsand NK legacy elementsctuallyrestrict our ability to rely on these models to
further our understandirgpaut human/organizational problem-solving dynamics.

Modelling landscapes and complexity

Irrespective of the NK model’'s biological origins, there are no clear arapsapecifications or
constraints about how fitness landscapes should be conceptualized. In fact, Kauffman
acknowledges that theontributionsof individual alleles’aredrawn randomly from a uniform
distribution, since the exact contribution of a gene to an orgaiimess is not known
(Kauffman 1993). The use of the NK canonical function has been justif@dimilar manner
by the fact that modellers are interested in how the evolutionary proggessalty” unfolds
(Rivkin 200Q p.828). However, as Jones and Forrest (129%) Frenken et al. (1998how

for K>3 NK landscapes become quickly uncorrela@den that organizational problems and
innovation problems are rarely the rifd correspondent of either completely smooth (K=0)
or completelyuncorrelated landscapes, tljgestions whether NK futions are meaningful in
modelling the dynamgof problem solving systems.

While amapping between the various components giffan sdution and its performance (e.g.
the modules of theeducational appdescribed in the introductioand its computatioha
performance) is not trivial to makin an organizational settinggcan beevenharder to see how
it can be argued that such mapping is random and more impotamtlyhe NK captures the
interdependence structure dfypical organizational problem

Indeeda number ofscholars have attemptenore meaningful extensions of thiK model
(Siggelkowand Rivkin 2003; Ethiraj and Levinthal 2004Ethiraj et al. 2008 For example,
acknowledging the problematic nature of the randmterdependence structure INK
functions Ethiraj and Levintha(2004)impose a blockhearmodular design on top of the NK
matrix and then allow solvers to optimize inside the modules as well as resaxntneative
practices. They show that erring on the side of too much desiopas detrimental to search
efficacy. However, Watsorand Pollack (2005) caution that according to Simon’s definition of

modularity, it is only on thehorttermthat modules are quasidependent and on the contrary,

18



longterm dynamics should assume stronger intedule interdependence. This kind of
interdependence, they argue, is not captured by structural (as opposed to functionalpfmode
modularity.

Onefurtherlimitation of these extensions is thidite propeliies of these pseuddK landscapes

are not as established as results for the canonicabdlK is not obvious whether assumptions
about the structure of theoblemor assumptions about the search behaviours are driving the
simulation resultsFor instane, recent workshowsthat imposing a block structure on the NK
interactions qualitatively changes the structure of the landscape by adimaityshingthe
number of evolutionary paths towards the global maximum, under the $%wivdition
(Schmiegeltand Krug2014), while Hebbron et al(2008) show that imposing a scale free
structure on an NK landscape leads to longer adaptive walks and more clustering afioptim
the landscape. In additioall the extensionseferenced in this studi.g. Gavetti and Levinthal
2000; Siggelkowand Rivkin 2003; Ethiraj and Levinthal 2004Gavetti 2005; Ethiraj et al.
2008) have as a basis the canonif@im for the NKfitness function, which averages across
individual fitness contributions. This, as Mbkey et al. (2013show,inevitably generatedié
same result: with thincrease in N and K, the value for the fitness function converges towards
the mean othe uniform distribution (0.5) and this skews the interpretation of the simulation
findings. The mrticular way the fitness function is generated in the NK model is also what
Szendro et al(2013 argue makesuch models less amendable to being able to capture

different levels of epistatic effects.

In biology, the empirical evidence towards the existence of /mdtal landscapes with
numerous epistatic interactions continues to increase (dstman and Adamwi@l1ghholars
inquiring if it is reasonable to assume that adaption is taking place aghby lincorrelated
landscapgand if it is meaningful to assume there are neutral ridges’ (Gavrilets 1999) or
hierarchical interdependence (Segre et al. 200&}h few exceptions (e.g. Fleming and
Sorenson 20012004), asimilar, empirically groundeddiscussion about how can we create

meaningfullandscape$or organizational problems seems to be missing.

Paradoxically,we arguethat one way forwardas suggested by current developments in
computer sciences to revert to what Wright (1932) and Kauffman (1993) originally proposed:
relying on a fitness landscape to first acquar&rough”image of a problem class, instead of

1% Strong selectin, weak mutation.
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investigating specific instanceRi(zer and Affenzeller 2012, Malan and Engelbrecht 2014).
Investigations into the topology of the fitness landscape would allow forex hetlerstanding

of the dynamic processes of adaptation in a similar vein to previous cotisitgra.g. rugged
landscapes are likely to trap solvers in suboptimal peakgptiee landscapes are likely to
attract solvers towards suboptimal optima étongside the few methods introduced in this
paper,a number oimethods for landscape analysis have bsmmprehensivelyleveloped in

this literature.
Modeling searchbehaviours

While previous paragraphs discuss issues related towewonceptualize landscapes, we now
turn to search behaviours. We have already discussed how several lstidiegiestioned and
attempted to expand the human problem solving nsadedeach beyond its biological origins.
Their approach is largely driven by theoretical concdyasrecent research is attempting to do
the same driverby empirical results. This empirically driven approach allows for a better
specification of search behaviswrhich in turn results in better models. The-olimber most
often used in management sciencstechastierestart hill climbing, rather thameé canonical
hill-climber. Before Billinger et al. (2013) few if any scholars spend timeaexpy some of

the subsequent (seemingly innocuous) modelling deciditmsever, as shown earliéffFigure

7), the performance of a hillimber with random rest& differs significantly from the

performance of a hitlimber without randomestarts

Theseresuls mirror a previous study conducted by Mason and Watts (2012). By comparing the
performance of actual solvers and computational agents, Mason and Watts (2012) show that
heterogeneity in terms of search behaviours has the potential to greatyaef the outcome

of the search process. Wather relying on constructs such as attention corftralreirc
Martinezet al. 201%, intelligence(Steyverset al. 2009 or cognitive stylegKirton 1979, there

is empirical evidence that there is a great heterogeneity when it comes to hesnelm s
behaviours, busuch heterogeneity is rarely taken into account in modelling appro@dilks

and Page 2009)rhis is alsoendorsedby empirical resultswhich suggest that humans are
capable of solving hard computational problems (Carruthers and Stege 2013), evidence to the

fact that humans have far more sophisticated search strategies.
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We have shown how assumptsabait menory influence performanc@igure 8) Memory is

not only important when it comes to restricting the search gpageGavetti 2005), but also as

one wayof advaning more plausible assumptions into modelling human protsdelving.

Human problem solvers are not guided in their search merely by immediate feedbadto but

by representations of the problem they form over time, via accumulated expébDelicet al.

2012) The modelling community has struggled to capturewuiaispreferred direction{Winter

et al. 2007)or partial representations of the solution (Gavetti and Levinthal ,2G@0etti

2005) but the attempt is complicated by the fact that one assumes an agent has a problem

representatiobeforesolving a problem. Where could this representation come from?

One answer lies in the fact that the mental models or representations that ssvierguide
their search are themselves adaptive and subject to reinforcement IdMiliaigand Page
2009) It is then nobnly in the generation and evaluationsolutionsthat feedback loops are
important (Bonabeau 2009)but the same mechanism can account for the emergence and
evolution of problem representations as solvers engage in “imagining futunts“g\8chacter
etal. 2007 p. 659). This approach insures that solvers do not have to start with-amexnap

of the landscape, but gradually formulate it, or as Sianwh Newell describe it (1972hey
incorporate knowledge into their search heuristic. The computational solutions irtkelve
implementation of machine learning techniq@Bsnd 2006)which can range from Bayesian
algorithms (Pelikan et al. 2003) decision treegHuys et al. 2012)and more recently deep
learning(Mnih et al. 2015)Irrespective of the details, thesethods have the potential to bring
forward a middle way in modelling problem solving that is in keeping with the bounded
rationality assumption, but at the same time allovese than “antike” behaviour(Winter et

al. 2007)consistent with some of the theories regarding human cognition (Le.Z0A8)
underlying idea is that while engaging in problem solving, as more information istdgail
human solvers are able to detect and abstract essential features, in the samealvpstigsul
recognition works (Roland and Gulyas 19953 a result of thatin structured environments
subsequentariations or mutations are not random, but closer to what biologists call “fadilitate
variation™ generated new solutionsre potentiallyuseful (Parter et al. 2008p.2). This
however, is not possible iINK landscapes where fitness contributions are drawn randomly
from an underlying distributiosince, as Watsoat al. (2011) argue the environment has to

displaya certain degree oégularitythat the agents can exploit.
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Conclusion

While the simulation approach has gained attention in-siigtus outlets within organizational
theory, we acknowledge and address the scepiicederns still being raised about theoretical
assumptions (Fioretti 2013) and the weak empiricaliggiong of these assumption€hang

and Harrington 2006; Mason and Watts 2012). Much like in the original biological setup, the
organizational literature has had simplistic assumptions about agent behavioutdetninea
relatively undefined fitness landscap@anco and Hoetker 2008, McKelvey et al. 2013
However, unlike micrebiology, where evolutionary forces are well knowukley 2010,
defining human search behaviours in this conceptual framework turns out to be elusive: how do
we model and define what constitutes intelligent boundedly rational behaapinstancedo

agents have memory and how good are they at interpreting the landscape?

Given our limited understanding about thenotypephenotype mapping in a technological
setting(Solée et al. 2013yve suggest that the focshould notoe on the statistical features of

the landscape to be searched undeptiebit flip condition, but on how the interplay of search
behaviours andhe differentnatures of interdependence structutesislates intoproblem
solving performance. Only then we can focusow the search care best organized in such a
way that solvers effortlessly find themselves in the vicinity of the optimal sol(tiorrelin

and Zenger 2014).

Additionally, we argue that any model of organizational learning should allow foe mor
plausible (and if possibl empirically validated) assumptions regarding learning and expertise.
Forun-4nformed solves, the fitness landscape will be extremely large and rugged, as they have
to deal with a seemingly unconstrained search sfédteng and Norman 1994). However, a
problem representation works by effectively constraining the search, specerating a
different set of possible solutionBarly investigations in the usaf problem representations
(Kotovsky and Simori990)show that knowledge about the dseape changdke structure of

the landscape‘<the easyproblem>problem” (Winter 2004}". These ideas are not foreign to
organizational literature which has a long tradition of looking at managerialaecthrough

the lenses of cognitive frames (ohemas) which seem to be the primary source of difficulty
for organizations in turbulent environments (Kaplan 2008; Bingham and Kahl. Ziill3)most
modelling approaches do not tak#o accountthis perspective about how cognitive frames

change the search behavamdimplicitly thelandscape

| earning and practice as well as context influence whether a problem is perceigasyddy a given solver.
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We argue that moving away from “armchair speculations” Simon (1982) regardingnhum
search behaviour and the nature of the problem is essential in #téegssas seemingly
innocuous assumptions can drastically change the problem solving performan&eth&fe
identify two potential avenues for future research: focusing on different |gedfeatures and
creating “smarter” agents by relying on the receéevelopments ircomputer sciengeboth
which, we argue, should be endorsed by empirical calibration and validation.
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Figure 1.The same function (N=8, K=3) mapped with three different definitions of neighbourhood.
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Appendix 1

H-XOR function

The HXOR function (Watson and Pollack 1998)given by applying recursively an ‘exclusive or’

transformation onto the solution string where adjacent positions are consitietad) sith the
leftmost. For instance, a {1010 0010} string becomes first {1l and then { -}. Once the

transformationis completed, the payoff function rewards each-nolh position in the hierarchy.

Thus, a solution which contains an alternating pattern {1010 1010} would give a better score than a

{1111 1111} since it will generate payoffs at lower levels of the hibsaas well. The second level

transformation for the first solution is {11 11} while for the second itis<. The maximum score

is given by {1001 0110} or symmetrically by {0110 1001} (see a more extensive description in

paper ).

Operations for the ‘chunking algorithm’

Chunks 8
Inverse all

Mirror all

Chunks 4 4
Inverse the 3 chunk
Inverse the % chunk
Mirror the ' chunk
Mirror the 2 chunk

e.g.
e.g.
e.g.
e.g.

Permute the®land 2° chunk e.g.

Chunks 32 3
Inverse the 3 chunk
Inverse the %' chunk
Inverse the 8 chunk
Mirror the ' chunk
Mirror the 2 chunk
Mirror the 3% chunk

e.g.
e.g.
e.g.
e.g.
e.g.
e.g.

e.g. 01111111->10000000
e.g.01111111->11111110

0111 1111->1000 1111
0111 1111->0111 0000
0111 1111->1110 1111
0111 1110->0111 0111
0111 1111->1111 0111

01111111->10011111
01111111->01100111
01111 111->011 11 00O
01111111->110 11 000
011 10111->011 01 000
011 11 011->011 11 110
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Permute the*land 3 chunk e.g. 011 11 111->111 11 011

Chunks 2222

Inverse the ¥ chunk e0.01111111->10111111
Inverse the % chunk e.g. 011111 11->01 0011 11
Inverse the 8 chunk e.g.01111111->01110011
Inverse the @ chunk e.0.01111111->01111100
Mirror the £ chunk e.g.01010101->10010101
Mirror the 2" chunk e.g. 01 01 01 01->01 10 01 01
Mirror the 3¢ chunk e.g. 01 01 01 01->01 01 10 01
Mirror the 4" chunk e.g.01010101->01010110

Permute the®land 2° chunk e.g. 01 11 11 11->11 01 11 11
Permute the*land 4" chunk e.g. 01 11 11 11->11 11 11 01
Permute the™ and 3 chunke.g. 11 01 11 11->11 11 01 11
Permute the'3and 4" chunk e.g. 11 11 01 11->11 11 11 01

Watson, R. A. and J. B. Pollack (199Bjerarchically consistent test problems for genetic

algorithms Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress
on, |IEEE.
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