
Paper to be presented at the 

DRUID Society Conference 2014, CBS, Copenhagen, June 16-18

   

The Division of Innovative Labor between Universities and Firms:

Evidence from ?Knowledge Twins?
Michaël  Bikard

London Business School
Strategy & Entrepreneurship

mbikard@london.edu
 
 
 

Abstract
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knowledge that has a higher technological potential. Exploiting simultaneous discoveries as ?knowledge twins,? we find
that firms and universities are conducive to a different uses of scientific knowledge. While firms efficiently translate
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ABSTRACT 

Do firms and universities play distinct roles in the process of science-based invention and 

if so, how do they differ? This paper examines the relative impact of both types of organizations 

on knowledge use empirically. We disentangle the marginal impact of the organizational 

environment from the impact of selection, in which firms gravitate around scientific knowledge 

that has a higher technological potential. Exploiting simultaneous discoveries as “knowledge 

twins,” we find that firms and universities are conducive to a different uses of scientific 

knowledge. While firms efficiently translate knowledge into patented inventions, universities 

tend to use it to produce yet more scientific knowledge in the form of scientific publications. 

These differences are also apparent within discovery teams when observing collaborations 

between firms and universities.  
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1. INTRODUCTION 

Universities and firms both play important roles in the process of science-based 

invention.  Entire industries as with semi-conductors or biotechnologies can track their origins to 

the benches of university labs. The division of innovative labor has been often described. 

Universities tend to focus on fundamental research whereas firms undertake more applied 

projects (Rosenberg and Nelson 1994; Mansfield 1998; Cohen, Nelson, and Walsh 2002; 

Sauermann and Stephan 2013). As the link between invention and public science intensifies 

(Narin, Hamilton, and Olivastro 1997; Branstetter 2005), the respective roles of firms and 

universities are however becoming less clear. On the one hand, firms are commonly involved in 

fundamental scientific research (Rosenberg 1990). On the other, a growing number of 

universities and public organizations undertake “translational activities” (Harris 2011). Taken 

together, these trends beg the question of the circumstances under which scientific research 

ought to be endeavored in a firm or in a university. Couldn’t science-based invention occur 

entirely within firms (or within universities)? How does each type of organization shape 

scientific knowledge and its translation into new technologies?  

Firms and universities certainly present different environments for scientific research. For 

example, firms are likely to under-invest in basic science because they tend to be unable to 

appropriate the economic value stemming from this type of work (Nelson 1959; Arrow 1962). 

They are more focused than universities, but they also incur higher costs, and will therefore tend 

to work on more applied projects (Aghion, Dewatripont, and Stein 2008). In addition, 

universities and firms have different missions, and this difference might impact the motivation of 

academic and corporate scientists (Lacetera 2009a). Although these studies have provided 

fascinating insights about the selection of firms and universities into different projects, little is 
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known about the impact that both environments have on scientific knowledge. Yet the type of 

environment in which the research is done might not be inconsequential for the development of 

that knowledge. Using an in-depth case study, Stern (1995) has found that particularities of the 

academic environment had been obstacles to the rapid development of synthetic insulin at 

Harvard and UCSF. Absent a systematic examination of the impact that firms and universities 

have on scientific knowledge, the tradeoffs associated with the use of each type of organization 

remain unclear.  

To answer this question, we consider that scientific knowledge might be used for the 

production of new technologies (Fleming and Sorenson 2004; Aghion, Dewatripont, and Stein 

2008) but that it might also be used for the production of additional scientific knowledge 

(Furman and Stern 2011). In turn, this “dual usefulness” of scientific knowledge (Nelson 1962; 

Stokes 1997) provides a key to understanding the division of labor between universities and 

firms. Environments that are conducive to the translation of scientific knowledge might not be 

adapted to its use for further scientific exploration. In other words, a tradeoff might exist 

between organizing for using scientific knowledge as “shoulders” for additional research and 

organizing for using scientific knowledge as “map” fostering technology development. We 

propose that while universities are particularly conducive to using scientific knowledge as a 

springboard for further scientific explorations, firms tend to foster its translation into new 

technologies. Because both uses are ultimately beneficial to science-based invention, both firms 

and universities play fundamental but distinct roles in the division of innovative labor.   

The challenge in exploring the uses of scientific knowledge empirically is considerable. 

The potential uses of a given piece of knowledge are always unobserved. Hence, measured rates 

of follow-on uses (e.g., follow-on publications or inventions) might result from the environment 
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in which a given discovery was made, but it might also be a consequence of the nature and 

promise of that discovery. For instance, new knowledge produced in universities is likely to be 

more fundamental on average than scientific discoveries made by firms. In order to examine the 

relative impact of the academic and industry environments on science-based invention, it is 

crucial to account for the technological potential of the scientific discoveries. This paper reports 

a novel empirical strategy to tackle this challenge. 

 In the winter of 1999, two teams of scientists simultaneously discovered VR1 (vanilloid 

receptor-1), the receptor for the pain caused by excessive heat or capsaicin, the pungent 

component of chili peppers. The first team, led by Dr. John B Davis, sent its results to Nature on 

December 20, 1999 and the paper was published on May 11, 2000. The second team, led by Prof. 

David Julius, sent its results to Science on January 18, 2000 and the paper was published on 

April 14, 2000. The new knowledge had important implications for the development of pain 

therapeutics. Yet, both discoveries were made in very different organizations. Julius is an 

academic based at UC San Francisco. In contrast, Davis is an industrial scientist working at 

SmithKline Beecham. Simultaneous discoveries are a fascinating and relatively frequent 

phenomenon (Merton 1961). When the discoverers submit their findings for publication at 

almost the same time, two or more papers disclosing the same discovery can be accepted, thus 

leading to the publication of “paper-twins.” Paper-twins are scientific articles that disclose the 

same underlying piece of knowledge. They are thus more than closely related or complementary 

discoveries. Rather, by embodying the same piece of knowledge that emerged in two distinct 

environments, paper-twins are a natural consequence of the duplication of effort in science, and a 

potentially rich setting to study the determinants of science-based invention. 
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 The “experiment” afforded by the observation of discoveries occurring simultaneously in 

a university and in a firm will allow for a set of precise tests of the relative impact of both types 

of organizations on knowledge use. First, we examine the extent to which firm and university 

scientists translate the newly produced scientific knowledge into published scientific knowledge 

and patented inventions.  Second, we examine the quality of follow-on publications and patents 

as measured by their citations. Third, we examine the marginal impact of both types of 

organizations on knowledge use in the context of university-firm collaborations. Because it 

enables the observation of the non-occurrence of patents and publications that could have 

occurred, paper-twins are a setting particularly suited to investigating the impact of different 

environments on knowledge use.  

 The analysis centers on 90 scientific papers disclosing thirty-nine simultaneous 

discoveries that involved at least one team from a university and another team from a firm. These 

90 teams produced 171 patents and 320 publications based on the new knowledge, therefore 

allowing for a quantitative study of the impact of each organizational environment on knowledge 

use.  Prior studies of the division of innovative labor have relied on formal modeling (Arrow 

1962; Aghion, Dewatripont, and Stein 2008; Lacetera 2009a) or in-depth case studies (Stern 

1995). Though our analysis centers on “only” 39 simultaneous discoveries, this is nevertheless 

the first quantitative investigation of the impact of the university and firm environments on the 

use of scientific knowledge. We complemented our econometric analysis by interviewing 21 

scientists that were the corresponding author on at least one of the 90 publications. The results 

indicate that the dual usefulness of scientific knowledge lies at the core of the division of 

innovative labor between universities and firms. Keeping the discovery constant, scientists from 

industry produce over three times more patents than their colleagues in academia; but academic 
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scientists produce over three times more publications than their industry counterparts.  Our 

interviews further reveal that this robust difference in the organization’s marginal impact stems 

from a number of factors including different missions and cost structures but not limited to them. 

 

2. THE IMPACT OF INDUSTRY AND ACADEMIA ON NEW SCIENTIFIC 

KNOWLEDGE 

2.1. A Division of Innovative Labor 

The existence of a division of innovative labor between firms and universities has been 

well documented. In its simplest form, universities are known to focus on more fundamental 

questions and firms tend to use scientific knowledge to produce new technologies. These 

differences have been established empirically using both case studies and large scale surveys 

(Rosenberg and Nelson 1994; Mansfield 1998; Cohen, Nelson, and Walsh 2002; Sauermann and 

Stephan 2013). While the existence of a division of innovative labor is consensual, the 

mechanism underlying this division of innovative labor is not.  

Universities and firms present very different organizational environments. In a nutshell, 

firms tend to focus on the private appropriation of the results of their research. In contrast, 

scientists at universities face a larger number of goals. Although university scientists often value 

economic impact, they need to balance this objective with their traditional pursuit of knowledge 

for knowledge’s sake as well as with the educational mission of academic institutions. The 

widely studied difference in institutional logic (Merton 1973; Dasgupta and David 1994; 

Gittelman and Kogut 2003; Murray 2010) has important consequences concerning the daily work 

of scientists in both environments. Academic scientists enjoy greater freedom and are primarily 

rewarded for their contribution to the knowledge commons as apparent through their publication 
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record. In contrast, corporate scientists tend to publish less and patent more—especially when 

they conduct work of more applied nature (Moon 2011; Sauermann and Stephan 2013).  Firms 

also tend to offer lower levels of freedom but higher salaries (Stern 2004). These differences, in 

turn, attract different types of scientists: PhD students that select into academia have a stronger 

taste for the nonmonetary benefits of science (Roach and Sauermann 2010; Agarwal and 

Ohyama 2013).  While these differences are likely to play a key role in the division of innovative 

labor, the nature of this role remains contested.  

To better understand this division of innovative labor, a number of studies have focused 

on specific differences between firms and universities and have theorized about their 

implications using formal models. Historically, these models have focused on firms’ difficulty to 

capture the economic value from their investment in research. Because  competitive markets 

under-incentivize private investment in basic science, public support is justified (Nelson 1959; 

Arrow 1962). While they make a convincing case for subsidizing basic research, these studies 

provide little insight about whether these public subsidies should be given to universities or to 

firms. More recently, a few studies have departed from the traditional focus on appropriability 

and have instead emphasized firms’ superior focus. Aghion, Dewatripont, and Stein (2008) 

explore the tradeoff between private sector focus and academic freedom. Because scientists 

value academic freedom, firms need to pay them a wage premium so that they give it up. The 

combination of higher wages but greater focus in firms makes it socially optimal for them to 

concentrate on later-stage research while academic scientists can conduct basic research at a 

lower cost. Lacetera (2009a; 2009b) also consider firms’ focus. However, he does not contrast it 

with academic freedom but with academic scientists’ multiple goals. In two models, he considers 

the impact of this difference in goals on the type of research and development activities that are 
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pursued in firms and in universities. Lacetera (2009a) examines firms’ decision to conduct an 

R&D project in-house or to outsource it to a university. By keeping an R&D project in-house, a 

firm keeps greater discretion over the project, and maintains its ability to terminate it at any time. 

This control comes at a cost, however, because scientists are aware that their project can be 

interrupted and therefore lose motivation. The model predicts that firm will outsource projects 

that have a broader applicability, but that they will keep longer projects in-house. Lacetera 

(2009b) focuses on the decision of scientists in industry and in academia to pursue commercial 

activities. He finds that the difference in goals of the scientists in both environments might lead 

academic scientists to more reluctantly move to commercially relevant activities, but that it 

might also drive them to commercialize faster, less finished projects than their counterparts in 

industry. Taken together, these studies have provided fascinating insights about the conditions 

under which universities and firms might respectively be used. However, they do have not 

considered that the two types of organizations might have a different impact on knowledge. 

Yet, case studies have found that firms and universities might have a different impact on 

scientific knowledge.  Stern (1995) explores how academic scientists’ variety of goals affects 

their ability to produce science-based inventions efficiently using a rich description of the case of 

synthetic insulin in the late 1970s. Three teams played a key role in the expression of human 

insulin in E. coli bacteria. Two were primarily academic efforts: Walter Gilbert’s group at 

Harvard University and William Rutter and Howard Goodman’s groups at UCSF worked on this 

topic in parallel. The third effort was led by Herbert Boyer and Bob Swanson and was organized 

as a start-up called Genentech1. Genentech as an organization was focused on the development 

of synthetic insulin. In contrast, the UCSF and Harvard teams were trying to combine the pursuit 

                                                           
1
 All three teams involved collaborations between academia and industry. The organization of the team leader 

however differed, and this difference seems to have played a key role in the process of science-based invention in 
the case of synthetic insulin. 
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of the new technology with the development of new fundamental insights while training the labs’ 

students.  They chose to express insulin in bacteria using the DNA cloning (cDNA) method 

while Genentech used gene synthesis. The cDNA method promised richer fundamental insights 

but was much more difficult to implement than gene synthesis. In addition, Genentech made 

hiring decisions that were designed to increase the efficiency of the process of science-based 

invention whereas the academic teams faced tradeoffs between research speed and students’ 

training. On August 24, 1978, the Genentech team successfully expressed human insulin in 

bacteria. At that time, the Harvard and UCSF teams had just started to seriously organize their 

commercial activity (Stern 1995). Similar patterns have been found in other case studies. For 

instance, academic orientation might also be reason why the transistor was invented at Bell Labs 

rather than at Purdue University (Bray 1997; Fini and Lacetera 2010). 

Universities and firms, then, might have a different impact on the development of 

scientific knowledge. This impact, however, has received little attention beyond Stern’s in-depth 

exploration. Yet, absent a clear understanding of this impact, the tradeoffs associated with 

conducting research in either environment remain little understood. 

2.2. Two Different Uses of Scientific Knowledge 

We propose that firms and universities are two types of organizations that are conducive 

to a different use of scientific knowledge. Science can potentially be used in two ways, and firms 

and universities are each best adapted to one of these two uses. 

Scientific knowledge can be developed with two possible goals in mind. Nelson (1962) 

for example noted that the invention of the transistor was motivated by the hope of producing 

both scientific and practical advances. Stokes (1997) distinguished between research that is 

inspired by consideration of use and research that is inspired by a quest for fundamental 
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understanding. This potential “dual usefulness” of scientific knowledge stems from the nature of 

scientific knowledge itself. By uncovering new natural phenomena and regularities, scientific 

discoveries can potentially open two doors. On the one hand, it can open the door toward the 

development of a set of instructions to use these phenomena or regularities for a purpose (Mokyr 

2002).  In particular, new scientific knowledge might provide guidance in the process of 

invention, thereby vastly decreasing its cost (Nelson 1982; Fleming and Sorenson 2004). On the 

other hand, scientific discoveries can also open the door to new efforts toward a more detailed 

fundamental understanding of those phenomena and regularities.  Indeed, science as an 

institution is cumulative,  and each discovery can in principle provide new “shoulders” on which 

future research will stand (Merton 1973; Furman and Stern 2011). 

This potential dual usefulness of scientific knowledge has deep implications for 

researchers and policy-makers because different types of environments foster different types of 

uses. For example, concerns have been raised that intellectual property rights, while fostering 

science-based invention, might at the same time deter cumulative scientific research. A number 

of researchers have highlighted the benefits of IP rights for science-based invention, emphasizing 

the creation of a market for ideas as well as its role in fostering investment in knowledge that has 

commercial potential (Kitch 1977; Hellmann 2007). On the other hand, recent research has found 

that IP rights might have a negative impact on follow-on scientific research.  Using patent-paper 

pairs, Murray and Stern (2007) have found that the granting of a patent protecting the content of 

a recently published paper decreases follow-on citations to the paper by 10-20%. Conversely, 

Murray et al. (2011) have found that an NIH-induced reduction in access cost to patented 

engineered mice increases follow-on research and encourages the exploration of more diverse 

research paths. Interestingly the debate about the impact of IP rights on the two uses of scientific 
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knowledge is not close. Williams (2013) recently found that patents on gene sequences have had 

a negative impact on both types of uses. She compares two types of gene sequences: those genes 

that were first sequenced by the Human Genome Project stayed in the public domain whereas 

those that were first sequenced by the firm Celera were temporarily protected by intellectual 

property. Strikingly, Williams finds that Celera’s IP reduced subsequence research and product 

development on the order of 20-30%. The debate surrounding the impact of IP rights highlights 

the importance of considering the dual usefulness of scientific knowledge. Environments 

fostering invention are not necessarily beneficial to cumulative science, and vice versa.  

We propose that firms are a type of organization that is best adapted to explore the 

technological potential of scientific knowledge. Firms’ superior focus on economic value allows 

them to make more efficient decisions, both regarding hiring and research direction. More 

importantly perhaps, unlike their academic counterparts, firm scientists suffer no penalty from 

working on research projects that lack any scientific or educational value. In clear contrast, 

academic scientists suffer no penalty from working on projects that lack any economic value. 

Academic scientists are strongly incentivized to contribute to the scientific commons in order to 

further their own career. Certainly, at times, firms do publish and universities do patent (e.g., 

Rosenberg 1990; Henderson, Jaffe, and Trajtenberg 1998). However, on average, we propose 

that the marginal impact of firms and universities on scientific knowledge ought to be different. 

In short, firms tend to use a piece of knowledge to produce more inventions than universities 

whereas universities tend to use a piece of knowledge to produce more scientific publications 

than firms. We make the following predictions: 

H1: Firm scientists are more likely to turn a specific scientific discovery into a larger 

number of patents than university scientists. 
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H2: University scientists are more likely to turn a specific scientific discovery into a 

larger number of scientific publications than firm scientists. 

 

3. EMPIRICAL APPROACH 

3.1. The Challenge 

The empirical challenge in examining the treatment effect of different types of 

organizations on knowledge use is considerable. For example, when observing the emergence of 

science-based inventions, how can we gauge whether these stem from the intrinsic potential of 

the scientific knowledge itself or from the characteristics of the organization of discovery? 

Universities are widely believed to conduct much more basic research than firms. As a 

consequence, the relevance of university research for invention tends to be more indirect.  The 

fundamental empirical challenge is therefore an identification problem. The risk is to conflate the 

marginal impact of the environment of discovery with the selection effect of knowledge into this 

environment. A simple comparison between different types of environments (e.g., university vs. 

industry) might therefore lead to biased results due to unobserved differences in the knowledge’s 

potential.  Ideally, the researcher would like to compare the (observed) knowledge use with the 

(unobserved) knowledge potential uses. 

3.2. Paper Twins 

 This paper proposes a novel empirical approach exploiting the existence of simultaneous 

discoveries operationalized as paper twins. Paper twins are the dual instantiation of the same 

piece of new scientific knowledge in two distinct environments. The following example resulted 

from a discovery simultaneously made at UCSF and at SmithKline Beecham: 

Caterina et al. (April 2000) “Impaired Nociception and Pain Sensation in Mice Lacking 
the Capsaicin Receptor.” Science 
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“The capsaicin (vanilloid) receptor VR1 is a cation channel expressed by primary sensory 
neurons of the “pain” pathway. Heterologously expressed VR1 can be activated by vanilloid 
compounds, protons, or heat (>43°C), but whether this channel contributes to chemical or 
thermal sensitivity in vivo is not known. Here, we demonstrate that sensory neurons from 
mice lacking VR1 are severely deficient in their responses to each of these noxious stimuli. 
VR1−/− mice showed normal responses to noxious mechanical stimuli but exhibited no 
vanilloid-evoked pain behavior, were impaired in the detection of painful heat, and showed 
little thermal hypersensitivity in the setting of inflammation. Thus, VR1 is essential for 
selective modalities of pain sensation and for tissue injury–induced thermal hyperalgesia.” 
 
Davis et al. (May 2000) “Vanilloid receptor-1 is essential for inflammatory thermal 
hyperalgesia.”  Nature 
“The vanilloid receptor-1 (VR1) is a ligand-gated, non-selective cation channel expressed 
predominantly by sensory neurons. VR1 responds to noxious stimuli including capsaicin, the 
pungent component of chilli peppers, heat and extracellular acidification, and it is able to 
integrate simultaneous exposure to these stimuli (…). Here we have disrupted the mouse 
VR1 gene using standard gene targeting techniques. (…) Although the VR1-null mice 
appeared normal in a wide range of behavioural tests, including responses to acute noxious 
thermal stimuli, their ability to develop carrageenan-induced thermal hyperalgesia was 
completely absent. We conclude that VR1 is required for inflammatory sensitization to 
noxious thermal stimuli but also that alternative mechanisms are sufficient for normal 
sensation of noxious heat.” 

 

These excerpts describe two sets of results obtained by examining the behavior of mice 

lacking a specific receptor (VR1). Both teams have found that mice in which the VR1 gene had 

been disrupted exhibit normal reactions to a variety of stimuli but become completely insensitive 

to one specific stimulus (carrageenan-induced thermal hyperalgesia). One of the team (Caterina 

et al.) conducted its research within academia and the other team (Davis et al.) in a firm. Both 

papers were submitted within a month (respectively, January 18th 2000 and December 20th 1999). 

In short, the (nearly) simultaneous discovery of the capsaicin receptor in two different 

environments led to the disclosure of the same new knowledge in two distinct papers. 

We use simultaneous discoveries as an “experiment” from which it is possible to 

compare the relative impact of the academic and corporate environments on knowledge use.  

Specifically, our empirical strategy exploits three key aspects of the phenomenon associated with 
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the production of paper-twins: (a) since they disclose the same discovery, the knowledge 

disclosed in each of the paper-twins has intrinsically the same potential for follow-on use; (b) 

since simultaneous discoveries emerge in different organizations, the knowledge from each 

discovery might not actually be used in the same way; (c) knowledge use in different 

organizations can be measured by observing publications and patents citing the twin-papers. 

 

4. DATA AND METHODS 

4.1. Sample definition 

 The data for this study is based on the first automatically and systematically collected 

dataset of simultaneous discoveries. The full dataset consists in 1,246 papers disclosing 578 

discoveries published between 1970 and 2009. The core of the analysis presented in this paper is, 

however, based on a subset consisting of 90 scientific publications disclosing 39 simultaneous 

discoveries having involved at least one industry-based team and one team based in a public 

research organization. The algorithm used to build this dataset is based on the insight that two 

papers disclosing the same simultaneous discovery are systematically cited together in the 

follow-on scientific literature, not only in the same papers, but also in the same parenthesis, or 

adjacently (Cozzens 1989). Figure 1 summarizes the algorithm2. 

------------------------------------------ 
Insert Figure 1 about here 

------------------------------------------- 
Our data is drawn from several sources. Data about each publication comes from ISI Web 

of Science, Scopus and Pubmed. Details about the corresponding authors and corresponding 

organization come from an analysis of the text of the publications. Follow-on patents and 

                                                           
2 Tests of within-twin similarity omitted in AOM submission because of space constraints 
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publications data (through October 2013) were collected using Scopus and Pubmed respectively. 

Table 1 provides a list of variables and definitions. 

------------------------------------------ 
Insert Table 1 about here 

------------------------------------------- 
 

4.2. Dependent Variables3 

 Follow-on Inventions: We measure NPAT, the extent to which an organization uses a new 

piece of scientific knowledge in order to produce inventions, by counting the number of patents 

originating from one of the discovery organizations and that followed each simultaneous 

discovery.  In order to examine if the difference in quantity of follow-on invention could conceal 

different patenting standards, we also considered a citation-weighted patent count.  

Follow-on Publications: We measure NPUB, the extent to which an organization uses a 

piece of scientific knowledge in order to deepen a given line of research, by counting the number 

of publications originating from the discovery organizations and that followed each simultaneous 

discovery.  Just like with patents, we also examine a citation-weighted publication count. 

4.3. Independent Variable – Type of Organization of Discovery 

Our main explanatory variable, ACADEMIA, is a dummy variable that equals to one if 

the organization is a university or public research organization and zero if it is a firm4.  

4.4. Control Variables 

 Knowledge’s Potential: Our main empirical strategy to account for the unobserved 

potential uses of scientific knowledge is to focus our analysis on simultaneous discoveries. In our 

analysis, PAPER TWIN is a fixed effect for each simultaneous discovery. In addition, we might 

                                                           
3
 Details about variable construction were omitted in AOM submission because of space constraints 

4
 Since both types of organizations are of interest here we could just as well have considered an indicator variable 

called INDUSTRY=1-ACADEMIA 
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expect the relative impact of the university and firm environments to depend on the potential 

uses of the knowledge. Our proxy for a discovery’s technological (scientific) potential is the 

discovery’s yearly rate of citation in the patent (publication) literature by organizations that were 

not involved in the discovery.  

Patent-Paper Pair: In order to account for the existence of patent pairs automatically and 

systematically, we developed a variant of the method used by Thompson and colleagues 

(Thompson, Mowery, and Ziedonis 2013). Our systematic method to find patent twins to papers 

is detailed in Figure 25. Empirically, we created an indicator variable PATENT PAIR that takes 

the value one if the discovery organization has a patent pair and zero if it does not.  

------------------------------------------ 
Insert Figure 2 about here 

------------------------------------------- 
US-based Organization: We included an indicator variable that takes the value of one if 

the organization is based in the US (using the address figuring on the publication). 

4.5. Empirical Analysis6 

We study the use of scientific knowledge by organization i that take part to simultaneous 

discovery j. To do so, we examine the rate at which each of the discovery organizations 

generates patents and/or publications based on the new knowledge. 

Main Test: To test our key hypotheses we focus on the organization of the corresponding 

authors on each twin paper7.   Empirically, measuring follow-on use through patents and 

publications implies that we must account for its form as count data skewed to the right, calling 

for a count model such as a fixed-effect Poisson with quasi-maximum likelihood (i.e., “robust”) 

                                                           
5 Details about this algorithm were omitted in AOM submission because of space constraints 
6
 Details about the empirical analysis were omitted in AOM submission because of space constraints 

7
 In 7 papers, the corresponding author had both an academic and an industry affiliation. For these ambiguous cases, 

we have used the author’s email address in order to assign an organization type. In addition, we also drop the 
simultaneous discoveries that they were involved with in our robustness analysis. 
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estimates. Our test for the relative impact of the academic and industry environments on 

knowledge use by the discovery organization i of twin j is: ܷܵܧ ൌ  ݂ሺߝǢ ܣܫܯܧܦܣܥܣߙ   ܫܹܶ ܴܧܲܣܲ  ܰ  ܴܫܣܲ ܶܰܧܶܣܲߚ     ሻܺߜ
where ܷ ܰ  is eitherܧܵ ܣܲ ܶ or ܰ   the number of patents and publications produced byܤܷܲ

the discovery organization that build on the simultaneous discovery. As indicated above, we use 

both a simple count and a citation-weighted count of papers and patents. Our main explanatory 

variable,  ܣܫܯܧܦܣܥܣ, is an indicator that takes the value one if organization i is a university or 

a research institute and zero if it is a firm. ܲܫܹܶ ܴܧܲܣ ܰ is our simultaneous discovery-level 

fixed effect and ܴܲܫܣܲ ܶܰܧܶܣ is an indicator variable that equals to one if organization i was 

awarded a patent pair to the discovery j. Finally, ܺ is a vector of control variables including for 

instance a dummy variable if organization i is based in the US. 

 In order to gain a yet finer understanding of the relative impact of the university and firm 

environments on knowledge use, we further explored (a) whether there are systematic 

differences in the quality of the follow-on patents and publications as measured through citations 

and (b) whether similar patterns of follow-on use can be observed within-paper by focusing on 

academic-industry collaborations. 

Quality of Follow-on Papers and Patents: Diverging rates of patenting and publishing 

could conceal differences in the quality of the patents and publications produced by firms and 

universities. We investigate the existence of such difference in our data by exploring the impact 

of the firm and university environments on the number of citations received by their follow-on 

papers and patents. For this analysis, each follow-on paper (patent) constitutes one observation. 

We use an OLS regression with robust standard errors clustered at the level of the paper-twin and 

estimate for each publication (patent) k of organization i following simultaneous discovery j:  
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   ሺͳ   ሻܵܧܶܫܥ ൌ  ݂ሺߝǢ ܣܫܯܧܦܣܥܣߙ   ܫܹܶ ܴܧܲܣܲ  ܰ   ሻܺߜ 
where ܧܶܫܥ ܵ is either ܲ ܧܶܫܥ̴ܤܷ ܵ  or ܲܧܶܫܥ̴ܶܣ ܵ the number of citations received by 

follow-on publications (or patents). As before, ܣܫܯܧܦܣܥܣ is our main explanatory variable,  ܲܫܹܶ ܴܧܲܣ ܰ is our simultaneous discovery-level fixed effect, and ܺ is a vector or control 

variables including the publication year (filing year) of publication (patent) k and whether 

organization i is US-based. 

 University-Firm Collaborations: In order to ensure that our results are indeed revealing 

of the broader division of innovative labor, we explore follow-on use by universities and firms 

that collaborated on the same discovery paper. Empirically, we no longer study only the 

corresponding organization of each paper. Instead, we focus on each address figuring on the 

subset of our 1246 twin papers that were university-firm collaborations. We then test the relative 

impact of the university and firm environments on knowledge use by address m of paper l: ܷܵܧ ൌ  ݂ሺߝǢ ܣܫܯܧܦܣܥܣߙ   ܴܧܲܣܲ   ܴܫܣܲ ܶܰܧܶܣܲߚ     ሻܺߜ
where ܷ ܰ  is eitherܧܵ ܣܲ ܶ or ܰ   the number of patents and publications produced byܤܷܲ

the discovery organization figuring in address m that builds on discovery paper l.  ܣܫܯܧܦܣܥܣ 

is our main explanatory variable, ܴܲܧܲܣ is a publication-level fixed effect, ܴܲܫܣܲ ܶܰܧܶܣ is 

a dummy variable equals to 1 if the organization of address m has been awarded a patent pair, 

and ܺ  is a vector of address-level control variables. 

 

5. RESULTS 

5.1. Sample 

 Sample Description: Our main analysis focuses on a sample of 90 publications disclosing 

39 simultaneous discoveries that involved at least one firm paper and a university one. Table 2 
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describes our main variables.  The oldest of the simultaneous discoveries in our data dates back 

from 1994 and the most recent occurred in 2008. 58 of the 90 teams (64%) were based in the US. 

On average, each discovery is used to produce 1.90 follow-on patents and 3.56 follow-on 

publications. 88% of the 171 follow-on patents and 69% of the 320 follow-on publications that 

we observe stem from a US-based organization. Our analysis of university-industry collaboration 

is based on 773 addresses from 131 collaborative papers. 58% of those addresses are US-based, 

and each address produced on average 0.17 follow-on patent and 1.43 follow-on publications. 

------------------------------------------ 
Insert Table 2 about here 

------------------------------------------- 
 Out of our 90 publications, 49 have a corresponding author that was based in academia 

and 41 have a corresponding author that was based in a firm. Our analysis of within-twin 

similarity described in section 4.1 confirmed that those papers did indeed disclose the same 

discovery. Though within-twin citation difference ought to be small considering our algorithm, 

this difference could nevertheless be systematically correlated with the type of organization that 

produces the paper. Figure 3 shows that we do not find such a correlation in our data. A 

Wilcoxon-Mann-Whitney test shows that there is no statistically significant difference between 

the yearly citation rates of our university and firm papers (z = 0.37; p = 0.71).  

------------------------------------------ 
Insert Figure 3 about here 

------------------------------------------- 
 Sample in Perspective: Our 39 simultaneous discoveries are likely to be scientifically 

more important than the average published discovery for three reasons. First, since we selected 

simultaneous discoveries based on co-citation patterns, our dataset includes only well-cited 

papers. Second, our interviews revealed that scientific journals often like to publish several 

papers disclosing the same discovery, especially when the discovery is important. Third, many of 



20 

 

those simultaneous discoveries resulted from scientific races, and the latter are more likely to 

occur when a discovery appears particularly promising ex-ante. Overall, then, we should expect 

that the 39 discoveries in our data have a higher-than-usual scientific potential. 

 We should also expect that our 39 simultaneous discoveries have on average a high 

technological potential. Firms typically choose to work on knowledge that might have some 

technological implications. Since our simultaneous discoveries emerge in a firm at the same time 

as in a university, we are selecting on the type of project that firms undertake. Table 3 compares 

simultaneous discoveries that involve only university teams, those that involve only firms and 

our dataset of 39 simultaneous discoveries that involves both. Firm-firm twins produced 3.5 

follow-on patents and 1.3 follow-on publications on average whereas and these numbers were 

0.2 and 5.2 respectively for university-university twins.  Of course, it is impossible to know if 

these large differences stem from fact that universities tend to work on more fundamental 

knowledge or from the fact that universities and firms tend to use knowledge differently. 

Interestingly, our dataset of university-firm twins generated an intermediate number of follow-on 

patents and publications with 1.9 follow-on patents and 3.6 follow-on publications. 

------------------------------------------ 
Insert Table 3 and 4 about here 

------------------------------------------- 
 In order to put our 90 twin publications in perspective, we collected a sample of “regular” 

scientific publications. For each paper, we garnered information about the preceding article and 

the following article in the same issue of the same journal8.  We compare the 90 twin papers of 

our sample with the 180 non-twins in Table 3. We find that our 90 papers received on average 

nearly 7 times as many patent citations and 3 times as many publication citations as the 180 

papers that were adjacent to them. We further explore the shape of the distribution in Figure 4 

                                                           
8
 In practice, our script minimized the page differences and selected two articles of the same type in the same issue 

of the same journal 
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and find that the 90 papers in our sample have a much flatter distribution than the more 

traditional skewed distribution of the 180 adjacent articles. Clearly, the discoveries in our data 

display a much higher variance in terms of scientific and technological impact than typical 

academic papers and our dataset includes a disproportionate number of discoveries with high 

technological and/or high scientific impact.  

------------------------------------------ 
Insert Figure 4 about here 

           ------------------------------------------- 
In short, the 90 papers in our sample are not average scientific publications. Since we 

examine the use of scientific knowledge conditional on knowledge potential, our research setting 

ought to include discoveries with high technological and/or scientific potential.  Even if they are 

common, scientific discoveries that have little or no potential are likely to stay unused whether 

they emerge in a firm or in a university.  Because of the special characteristic of our dataset our 

results ought to be interpreted carefully. However, selecting on important discoveries has also 

advantages since these are presumably the discoveries that scientists, managers and policy-

makers are most interested in. 

5.2. Main Test 

Table 5 and 6 present the main result of our analysis. They consider respectively follow-

on invention and follow-on publication based on our dataset simultaneous discoveries. By 

allowing the observation of the same discovery in two distinct environments, simultaneous 

discoveries make it possible to identify systematic variance in knowledge use. Models (5-1) and 

(5-2) examine H1 and show that, conditional on a discovery’s technological potential, it is 

developed into over three times more patents if it emerges in a firm as opposed to a university. 

Of course, quantity is not quality, and one could be concerned that firms might have lower 

patenting standard than universities. Models (5-3) and (5-4) shows that the effect is stronger if 
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we consider citation-weighted patent count as opposed to a simple count. These results confirm 

our hypothesis that firms use scientific knowledge to produce more patented inventions. 

The difference in science-based invention observed in Table 5 could stem from the fact that 

academic scientists tend to use scientific knowledge for a different purpose than translation into 

new technology. Table 6 examines the extent to which firms and universities use new knowledge 

as “shoulders” to produce yet more scientific publications. Confirming H2, models (6-1) and (6-

2) show that university scientists use the new knowledge to produce over three times more new 

publications than firm scientists. Here too, we examine the possibility that firms and universities 

might have different publication standards by using a citation-weighted count of publications. 

Models (6-3) and (6-4) shows that our results remain essentially the same. 

 Figure 5 shows the different uses that universities and firms make of scientific knowledge 

graphically. The two plots show follow-on publishing (left-hand side) and follow-on patenting 

(right hand side) for firms (X-axis) and universities (Y-axis). Each dot corresponds to a paper 

twin. Since potential use is identical, if the type of discovery organization did not matter, we 

would expect the dots to stay close to the diagonal. Instead, we find that firms are much more 

likely to use the knowledge to produce more publications and firms are more likely to use it to 

produce more patents. Interestingly, the graph suggests that the effect is especially salient for 

knowledge that has high technological or high scientific potential. Indeed, the firms in our data 

rarely use the knowledge to produce more than five publications. Similarly, the universities in 

our data rarely use the knowledge to produce more than five patents. 

 Table 7 further estimates the robustness of our main result. In (7-1) and (7-4), we 

dropped simultaneous discoveries that involved more than two organizations and find that our 

result remain essentially the same.  Models (7-2) and (7-5) exclude 7 twin papers for which we 
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had one corresponding author that had both an academic and a corporate affiliation. As expected, 

the exclusion of these “hybrids” increases the magnitude of our main result and we find that 

firms produce more than four times more patents than universities and universities more than 

four times more publications than firms. If our results had been driven by a few outliers, we 

would have been able to see this in Figure 5. Models (7-3) and (7-6) nevertheless examines this 

possibility further by applying a 90% Winsorization to our dependent variables. The magnitude 

of our result decreases but the effect remains visible. 

 In order to more precisely understand our main result, table 8 examines how the effect of 

the organization of discovery varies with (a) the technological potential of the discovery, (b) the 

scientific potential of the discovery and (c) ownership of a patent pair.  Indeed, one of the 

downside of using paper-twin fixed-effects is that it does not allow us to observe variation in our 

main effect across discoveries. In section 5.1, we argue that the effect of the organizational 

environment should only be visible for discoveries that are potentially useful. If a discovery has 

no potential for use, it is likely to remain unused whether it emerges in a firm or in a university. 

Models (8-1) and (8-4) examine how our main effect interacts with technological potential.  

Model (8-1) focuses on patenting. As expected, in the absence of technological potential 

our coefficient for ACADEMIA becomes close to zero. No one patents. The impact, however, 

becomes significantly larger when technological potential increases, indicating that firms might 

seize technological opportunities more aggressively. Model (8-4) focuses on publishing and 

paints a slightly different picture. In the absence of technological potential, the difference in 

publishing rates between firms and universities is the highest. Interestingly, firms seem to 

increase their publication rate when the technological potential increases. These results are 

important because they show a possible connection between the type of use and the rate of use of 
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new knowledge. While we mostly focus on the former, this result suggests that the rate of use of 

knowledge with low technological potential might be higher in universities whereas the rate of 

use of knowledge with high technological potential might be higher in firms. Because both types 

of knowledge exist, this result highlights the importance of the division of innovative labor 

between universities and firms. 

 Models (8-2) and (8-5) investigate the interaction with scientific potential. Before we 

examine the result, it is important to remember that while our dataset includes discoveries with 

no technological potential, it does not include discoveries with no scientific potential. All the 

discoveries in our data are not only published, they are also well cited, and our dataset therefore 

includes less variance with scientific potential than with technological potential. In fact, models 

(8-2) and (8-5) show non-statistically significant interaction effects between the organization of 

discovery and scientific potential. Finally, models (8-3) and (8-6) examine the interaction 

between the organization of discovery and having a paired patent. We find that that having a 

paired patent significantly increases our main effect with regard to patenting but not with regard 

to publishing. 

5.3. Quality of Follow-on Papers and Patents  

 Table 9 examines quality of the follow-on papers and patents produced by universities 

and firms as measured by their respective citations. Such an analysis is important because firms 

and universities might have different “quality thresholds”. For instance, a number of studies have 

found that academic patents receive on average more citations than industry ones (Henderson, 

Jaffe, and Trajtenberg 1998; Mowery, Sampat, and Ziedonis 2002), therefore suggesting that 

they might be more selective when it comes to patenting. With first examine citations to 

publications. Models (9-1) to (9-3) show that there is no statistically significant difference 
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between the number of citations received by follow-on publications, whether they stem from 

firms or academia. Models (9-4) to (9-6) examine the case of patent citations. Interestingly, we 

find that the average industry patent in our data receives significantly more citations than the 

average university patent. This result suggest that prior studies’ result that firm patents receive 

on average fewer citations might be driven by differences in the nature of the inventions that are 

patented in both environments. In fact, model (9-6) shows that the negative impact of academia 

on patent citations disappears after we add the twin fixed-effects. This result has two 

implications. First, firms’ patents might be more concentrated toward more promising lines of 

research than university patents (consistent with model 8-1). Second, within a given line of 

research, firm and university seem to generate patents of similar quality. 

5.4. University-Firm Collaborations  

Finally, since our argument is about the division of innovative labor between firms and 

university, we believe that we should be able to replicate our main finding using a separate 

dataset of university-firm collaborations. Of our 1,246 papers, 131 stemmed from such 

collaboration, therefore making it possible to study the division of innovative labor within 

papers. Specifically, we considered that firms and universities that made a joint discovery have 

admittedly the same knowledge at the same time—and therefore also the same potential for 

follow-on invention and publication. This test of our main hypothesis is inferior to the study of 

twins because the decision to get involved in follow-on research or invention is unlikely to be 

independent among collaborating organizations. However, if a division of innovative labor really 

exists, as we argued, we should be able to replicate our main finding with this different dataset. 

Table 10 and 11 present the same analysis as our tables 5 and 6, although with a different 

dataset. The data is organized at the address level, with paper-level fixed effects. In line with our 
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expectations, we are able to replicate our main finding. The collaborating university produces on 

average half the number of patents but far more publications (7 to 10 times more) than its 

corporate collaborator. The fact that our coefficient with this dataset are different than with the 

39 simultaneous discoveries is interesting but not surprising. As we saw in table 8, the magnitude 

of the coefficients will depend on the technological potential of the discoveries that we are 

studying. Since our dataset is different from the one that we examined in table 5 and 6, there is 

no reason to think that we should have found coefficients of the same magnitude. In fact the 

smaller coefficient for patenting differences and higher coefficient for publishing differences 

suggests that the 131 collaborative papers have on average a lower technological potential than 

the 39 simultaneous discoveries that constitute the core of our analysis. 

 

6. DISCUSSION AND CONCLUSIONS 

Both firms and universities produce scientific discoveries; and both of them at times 

translate their discoveries into new technologies. Yet the decision to conduct research in one type 

of organization or the other is not inconsequential. Firms and universities, we argue, play distinct 

roles in the process of science-based invention. Instead of focusing on the selection of different 

projects in universities and firms, this paper investigates the marginal impact of each type of 

organization on new scientific knowledge. Studying this impact empirically is difficult because 

universities and firms tend to work on projects that have very different potential for scientific 

and technological developments. To address this identification challenge, we focus on 

simultaneous discoveries in science. By observing the same discoveries being made by different 

teams in firms and in universities around the same time, we are able to track the impact that each 

type of organization has on knowledge use. 
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We find that firms and universities use scientific knowledge for different purposes. The 

dual usefulness of scientific knowledge therefore lies at the core of the division of innovative 

labor between universities and firms. Universities tend to use new scientific knowledge in order 

to produce yet more new knowledge whereas firms tend to use it to produce new science-based 

inventions. Keeping the discovery constant, our data suggest that scientists from industry 

produce over three times more patents than their colleagues in academia. In contrast, academic 

scientists produce three times more publications than their industry counterparts.  Taken 

together, these results suggest that conducting scientific research in one type of organization or 

the other is likely to bring different outcomes. By conducting research in an academic 

environment, managers and policy-makers are likely to gain fundamental understanding on a 

specific topic, and the latter is likely to be disclosed in the form of publications. In contrast, 

universities are not well adapted to translate scientific knowledge into new technologies, and 

firms are likely to be a more effective type of organization for this purpose. 

This research is not without limitations: First, the simultaneous discoveries in our dataset 

occur in the same planet – i.e. although many of our twins occur on different continents, we 

cannot exclude the possibility of contagion whereby the decision to use knowledge in a certain 

way in one organization is influenced by the other teams’ decisions. Second, the thirty-nine 

discoveries in our dataset that were made simultaneously in at least a firm and a university 

belong to a limited number of scientific specialties, especially immunology, oncology, and 

neuroscience, but also including materials science. For the majority of scientific disciplines 

including our own, no overlap exists between the scientific research that is conducted in industry 

and in academia, therefore raising questions about the generalizability of our conclusions. Third, 

we measure differences in knowledge use by examining publication and patent output. We are 
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not able to examine whether these differences are driven by diverging disclosure choices or 

whether they are driven by different research directions. Nonetheless, our setting provides the 

advantage that we are able to distinguish empirically between the selection process whereby 

firms and universities tend to work on different topics and the marginal impact of each 

organizational environment on knowledge use. Moreover, our results appear robust to a number 

of different specifications and can be replicated by analyzing collaborative papers between 

academia and industry. 

Our study is only a first step toward understanding the different roles that firms and 

universities play in the process of science-based invention. Other differences are likely to shape 

the decision to conduct research in one environment or the other, including the cost of labor in 

the two environments (Stern 2004), the varying levels of control that each environment offers 

over the research (Lacetera 2009a; Aghion, Dewatripont, and Stein 2008), as well as the 

differing social networks in which each type of organization is embedded (Murray 2002). These 

are all important elements that are likely to impact the division of labor between industry and 

academia. The importance of continuing the investigation of this division of labor should not be 

understated. As universities are increasingly involved in firm’s innovation strategy, more 

attention might usefully be brought to the fact that in practice, firms and universities do not only 

produce different types of scientific knowledge, but that they also have a distinct impact on the 

knowledge that they produce.  
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TABLE 1. Variables and definitions 
Variable Definition Source 

Discovery Characteristics  
PAPER-TWIN Dummy variable for each simultaneous discovery Twin matching algorithm 

SCIENTIFIC 
POTENTIAL 

Yearly rate of publication citations to twin papers by organizations that did not make the 
discovery 

Pubmed 

TECHNOLOGIC
AL POTENTIAL 

Yearly rate of patent citations to twin papers by organizations that did not make the 
discovery 

Scopus 

YEAR Year of publication of an article or year of patent filing WoS; USPTO 

   
Organization Characteristics  

ACADEMIA 
Dummy variable equal to 1 if the organization is a university or a government 
organization; 0 otherwise 

Paper itself 

PATENT PAIR Dummy variable equal to 1 if the organization was awarded a patent pair; 0 otherwise 
Patent pair matching 
algorithm 

US 
ORGANIZATION 

Dummy variable equal to 1 if the address of organization on the discovery paper is in the 
US; 0 otherwise 

Paper itself 

   
Measures of Knowledge Use  

NPAT 
For organization i, NPAT is the count of patents citing the discovery paper that (1) has 
organization i as assignee, (2) includes one of the discovery author as inventor and (3) 
was filed after the year of publication 

Scopus 

NPUB 
For organization i NPUS is the count of publications citing the discovery paper that (1) 
has the discovery organization as address, (2) includes one of the discovery author 

Pubmed 

PAT_CITES Count of citations received by patent k in the patent literature by 2013 USPTO 

PUB_CITES Count of citations received by publication k in the publication literature by 2013 Pubmed 
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TABLE 2. Means and standard deviations 
     

Variable N Mean Std. Dev. Min Max 
Main Analysis      
# PAPERS PER SIMULTANEOUS DISCOVERY 39 2.31 0.52 2 4 

DISCOVERY'S TECHNOLOGICAL POTENTIAL 39 2.37 3.56 0 20.9 

DISCOVERY'S SCIENTIFIC POTENTIAL 39 5.94 2.81 0.1 10.8 

ACADEMIA 90 0.54 0.50 0 1 

US ORGANIZATION 90 0.64 0.48 0 1 

PUBLICATION YEAR 90 2000.44 3.65 1994 2008 

PATENT PAIR 90 0.24 0.43 0 1 

# FOLLOW-ON PATENTS 90 1.90 5.30 0 34 

# CITATIONS-WEIGHTED PATENTS 90 17.61 65.30 0 443 

# FOLLOW-ON PUBLICATIONS 90 3.56 5.85 0 42 

# CITATIONS-WEIGHTED PUBLICATIONS 90 398.13 797.73 0 4132 

      
Quality of Follow-On Patents and Publications      
PATENT BY ACADEMIC ORGANIZATION 171 0.19 0.39 0 1 

PATENT BY US ORGANIZATION 171 0.88 0.32 0 1 

PATENT APPLICATION YEAR 171 2004.43 4.12 1995 2012 

LOG(1+PATENT CITATIONS) 171 1.23 1.28 0 4.1 

PUBLICATION BY ACADEMIC ORGANIZATION 320 0.79 0.41 0 1 

PUBLICATION BY US ORGANIZATION 320 0.69 0.46 0 1 

PUBLICATION YEAR 320 2007.06 4.37 1995 2013 

LOG(1+PUBLICATION CITATIONS) 320 2.36 1.33 0 5.7 

      
University-Firm Collaborations (Address Level)      
# ADDRESSES PER PAPER 131 5.90 4.43 2 37 

ACADEMIA 773 0.77 0.42 0 1 

US ORGANIZATION 773 0.58 0.49 0 1 

PATENT PAIR 773 0.06 0.24 0 1 

# FOLLOW-ON PATENTS PER ADDRESS 773 0.17 0.74 0 7 

# CITATIONS-WEIGHTED FOLLOW-ON PATENTS PER ADDRESS 773 0.30 1.93 0 25 

# FOLLOW-ON PUBLICATIONS PER ADDRESS 773 1.43 4.35 0 64 

# CITATIONS-WEIGHTED FOLLOW-ON PUBLICATIONS PER ADDRESS 773 42.81 158.98 0 2398 

 
 
 
 
TABLE 3. University-Firm Twins Compared to Other Twins 

  

  

UNIVERSITY-
UNIVERSITY 

TWINS 

UNIVERSITY-
INDUSTRY 

TWINS 

INDUSTRY-
INDUSTRY 

TWINS 
# Publications 1146 90 10 
# Follow-on Patents 0.2 1.9 3.5 
# Citations-Weighted Follow-on Patents 1.5 17.6 58.3 
# Follow-on Publications 5.2 3.6 1.3 
# Citations-Weighted Follow-on Publications 766.8 398.1 225.8 
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TABLE 4. University-Firm Twins Compared to Non-Twins 
    Variable N Mean Std. Dev. Min Max 

TWIN PAPERS (90 ACROSS UNIVERSITY-INDUSTRY BOUNDARY) 
    

Yearly Rate of Citation by Patents 90 1.78 2.47 0 15.5 

Yearly Rate of Citations by Other Publications 90 52.04 34.74 3.1 147.4 

      
NON-TWINS (180 ADJACENT ARTICLES) 

     
Yearly Rate of Citation by Patents 180 0.25 0.59 0 4.6 

Yearly Rate of Citations by Other Publications 180 17.76 19.28 0.5 131.5 
 
 
 
 
 
 
 
 

TABLE 5. Impact of Firms and Universities on Follow-On Inventions 
  FIXED EFFECT POISSON QML 

 
[Incidence-rate ratios in brackets in top line]  

 
Estimated coefficients in second line 

 
(Robust SEs reported in parentheses) 

 

DV = # PATENTS   
DV = # CITATION-WEIGHTED 

PATENTS 

  

Marginal 
impact; no 

control 

Marginal 
impact w/ 
controls   

Marginal impact; 
no control 

Marginal impact 
w/ controls 

      ACADEMIA [0.186] [0.299] 
 

[0.036] [0.053] 

 
-1.68 -1.206 

 
-3.311 -2.932 

 

(0.498)*** (0.438)*** 
 

(0.793)*** (0.951)*** 
US ORGANIZATION 

 
[0.616] 

  
[0.482] 

  
-0.484 

  
-0.73 

  

(0.81) 
  

(1.073) 
PATENT PAIR  

 
[4.376] 

  
[1.768] 

  
1.476 

  
0.57 

  

(0.871)* 
  

(1.349) 

        Observations 50 50 
 

38 38 
  Log likelihood -65.18 -57.03 

 
-228.34 -224.34 

  Paper-twin FE 21 21   16 16 
Values are incident rate rations; robust standard errors in parentheses 

 *** p<0.01, ** p<0.05, * p<0.1 
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TABLE 6. Impact of Firms and Universities on Follow-On Publications 
  FIXED EFFECT POISSON QML 

 
[Incidence-rate ratios in brackets in top line]  

 
Estimated coefficients in second line 

 
(Robust SEs reported in parentheses) 

 

DV = # PUBLICATIONS   
DV = # CITATION-WEIGHTED 

PUBLICATIONS 

  
Marginal impact; 

no control 
Marginal impact 

w/ controls   
Marginal impact; 

no control 
Marginal impact 

w/ controls 

      ACADEMIA [3.103] [3.049] 
 

[ 2.506] [3.078] 

 
1.132 1.115 

 
0.918 1.124 

 

(0.247)*** (0.242)*** 
 

(0.367)** (0.321)*** 
US ORGANIZATION 

 
[1.591] 

  
[0.681] 

  
0.465 

  
-0.384 

  

(0.418) 
  

(0.443) 
PATENT PAIR  

 
[ 1.626] 

  
[3.842] 

  
0.486 

  
1.346 

  

(0.403) 
  

(0.406)*** 

        Observations 76 76 
 

76 76 
  Log likelihood -111.03 -101.35 

 
-2403.52 -2056.93 

  Paper-twin FE 33 33   33 33 
Values are incident rate rations; robust standard errors in parentheses 

 *** p<0.01, ** p<0.05, * p<0.1 
     

 
TABLE 7. Impact of Universities and Firms on Follow-On Use: Robustness Analysis 

  FIXED EFFECT POISSON QML 

 
[Incidence-rate ratios in brackets in top line]  

 
Estimated coefficients in second line 

 
(Robust SEs reported in parentheses) 

 
DV = # PATENTS   DV = # PUBLICATIONS 

  

Triplets and 
Quadruplet 
excluded 

Dual 
affiliations 
excluded 

90% 
Winsorized 

DV   

Triplets and 
Quadruplet 
excluded 

Dual 
affiliations 
excluded 

90% 
Winsorized 

DV 

        ACADEMIA [0.226] [0.233] [0.568] 
 

[3.236] [4.247] [2.980] 

 
-1.487 -1.457 -0.566 

 

1.174 1.446 1.092 

 

(0.558)*** (0.552)*** (0.312)* 
 

(0.316)*** (0.287)*** (0.245)*** 
US ORGANIZATION [0.321] [0.370] [1.029] 

 

[0.760] [0.951] [1.106] 

 

-1.138 -0.995 0.0285 
 

-0.275 -0.0498 0.101 

 
(0.826) (0.948) (0.402) 

 

(0.426) (0.442) (0.292) 
PATENT PAIR  [3.872] [3.027] [2.544] 

 

[2.378] [2.680] [1.866] 

 
1.354 1.108 0.934 

 

0.866 0.986 0.624 

 

(1.301) (0.930) (0.532)* 
 

(0.470)* (0.418)** (0.355)* 

     
 

  Observations 28 41 50 
 

48 63 76 
 Log likelihood -24.70 -46.76 -24.95 

 

-58.66 -66.29 -92.72 
Paper-twin FE 14 18 21   24 28 33 
Values are incident rate rations; robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 8. Impact of Universities and Firms on Follow-On Use: Interactions 
  FIXED EFFECT POISSON QML 

 
[Incidence-rate ratios in brackets in top line]  

 
Estimated coefficients in second line 

 
(Robust SEs reported in parentheses) 

  DV = # PATENTS   DV = # PUBLICATIONS 

        ACADEMIA [0.926] [0.806] [0.655] 
 

[3.694] [1.977] [2.558] 

 
-0.0767 -0.216 -0.424 

 
1.307 0.682 0.939 

 
(0.608) (1.893) (0.448) 

 
(0.288)*** (0.502) (0.306)*** 

US ORGANIZATION [1.097] [1.629] [1.222] 
 

[1.828] [1.810] [1.755] 

 
0.0927 0.488 0.201 

 
0.603 0.593 0.562 

 
(0.907) (1.552) (0.628) 

 
(0.301)** (0.323)* (0.339)* 

PATENT PAIR  [0.710] [0.736] [1.948] 
 

[1.630] [1.803] [1.488] 

 
-0.342 -0.306 0.667 

 
0.489 0.589 0.397 

 
(0.402) (0.482) (0.483) 

 
(0.309) (0.349)* (0.522) 

ACADEMIA* 
TECHNOLOGICAL POTENTIAL 

[0.659] 
   

[0.868] 
  

 
-0.416 

   
-0.142 

  
 

(0.207)** 
   

(0.069)** 
  

ACADEMIA* 
SCIENTIFIC POTENTIAL  

[0.810] 
   

[1.049] 
 

  
-0.21 

   
0.0474 

 
  

(0.333) 
   

(0.069) 
 

ACADEMIA* 
PATENT PAPER PAIR   

[0.097] 
   

[1.314] 

   
-2.337 

   
0.273 

   
(0.812)*** 

   
(0.657) 

        Observations 50 50 50 
 

76 76 76 
Log likelihood -58.26 -61.68 -57.17 

 
-95.63 -99.47 -99.72 

Paper-twin FE 21 21 21   33 33 33 
Values are incident rate rations; robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 9. The Quality of University and Firm Publications and Patents 

   OLS 

 
DV = LOG(1+NCITES) 

 

NCITES = # PUBLICATION 
CITATIONS 

  NCITES = # PATENT CITATIONS 

  

Marginal 
impact; no 
control; no 

FE 

Marginal 
impact w/ 
controls; 
no FE 

Marginal 
impact w/ 
controls 
and FE   

Marginal 
impact; no 
control; no 

FE 

Marginal 
impact w/ 
controls; 
no FE 

Marginal 
impact w/ 
controls 
and FE 

        ACADEMIA -0.343 -0.158 -0.0587 
 

-0.904** -0.894** 0.00889 

 
(0.22) (0.14) (0.21) 

 
(0.33) (0.33) (0.50) 

YEAR 
 

-0.147*** -0.173*** 
  

-0.034 -0.234*** 

  
(0.02) (0.03) 

  
(0.04) (0.05) 

US ORGANIZATION 
 

-0.0675 -0.478 
  

-0.0471 0.718 

  
(0.23) (0.34) 

  
(0.45) (0.72) 

CONSTANT 2.630*** 297.2*** 349.1*** 
 

1.400*** 69.51 470.4*** 

 
(0.15) (48.29) (55.87) 

 
(0.25) (84.62) (94.45) 

        Observations 320 320 320 
 

171 171 171 
R-squared 0.011 0.242 0.242 

 
0.077 0.088 0.367 

Paper-twin FE none none 33   none none 21 
Robust standard errors in parentheses clustered at the level of the paper-twin 

  *** p<0.01, ** p<0.05, * p<0.1 
       

 
TABLE 10. Firm-University Collaboration and Follow-On Inventions 
  FIXED EFFECT POISSON QML 

 
[Incidence-rate ratios in brackets in top line]  

 
Estimated coefficients in second line 

 
(Robust SEs reported in parentheses) 

 
DV = # PATENTS   

DV = # CITATION-WEIGHTED 
PATENTS 

  
Marginal 

impact; no 
control 

Marginal 
impact w/ 
controls 

  
Marginal impact; no 

control 
Marginal impact w/ 

controls 

      ACADEMIA [0.541] [0.444] 
 

[0.525] [0.229] 

 
-0.615 -0.812 

 
-0.645 -1.474 

 
(0.335)* (0.406)** 

 
(0.503) (0.588)** 

US AUTHOR 
 

[1.611] 
  

[0.463] 

  
0.477 

  
-0.77 

  
(0.238)** 

  
(0.999) 

PATENT PAIR  
 

[18.256] 
  

[28.967] 

  
2.905 

  
3.366 

  
(0.726)*** 

  
(1.201)*** 

      Observations 156 156 
 

87 87 
Log likelihood -106.22 -78.71 

 
-177.17 -115.38 

Paper FE 28 28   19 19 
Values are incident rate rations; robust standard errors in parentheses 

 
*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 11. Firm-University Collaboration and Follow-On Publications 
  FIXED EFFECT POISSON QML 

 
[Incidence-rate ratios in brackets in top line]  

 
Estimated coefficients in second line 

 
(Robust SEs reported in parentheses) 

 
DV = # PUBLICATIONS   

DV = # CITATION-WEIGHTED 
PUBLICATIONS 

  
Marginal 

impact; no 
control 

Marginal impact 
w/ controls 

  
Marginal impact; no 

control 
Marginal impact w/ 

controls 

      ACADEMIA [7.148] [10.571] 
 

[4.355] [6.888] 

 
1.967 2.358 

 
1.471 1.93 

 
(0.284)*** (0.360)*** 

 
(0.277)*** (0.300)*** 

US AUTHOR 
 

[3.375] 
  

[2.717] 

  
1.216 

  
0.999 

  
(0.366)*** 

  
(0.316)*** 

PATENT PAIR  
 

[5.620] 
  

[8.568] 

  
1.726 

  
2.148 

  
(0.335)*** 

  
(0.429)*** 

      Observations 621 621 
 

613 613 
Log likelihood -855.79 -766.15 

 
-21525.46 -18196.14 

Paper FE 105 105   104 104 
Values are incident rate rations; robust standard errors in parentheses 

 
*** p<0.01, ** p<0.05, * p<0.1 
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Step 1: For each author on a discovery paper, collection of all the patents that (a) has their name listed as inventor 
and (b) was filed the year of paper publication or the year preceding it using the USPTO website. 
  

Step 2: Selection of the patents that emerged for at least two coauthors of a given paper 

Step 3: For each organization on a discovery paper, establish whether the organization is an assignee on one of 
the patents selected in Step 2. 

  

FIGURE 1. AN AUTOMATED AND SYSTEMATIC METHOD TO GENERATE A LIST OF 
SIMULTANEOUS DISCOVERIES (Reproduced from Bikard 2012) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2. A SYSTEMATIC METHOD TO FIND PATENT PAIRS TO PAPERS  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 1: Collection of ISI Web of Knowledge data on all research articles from the 15 non-review scientific 
publications having the highest Journal Impact Factor 
 

(42,106 publications) 

Step 2: Using Pubmed and CrossRef, verify the type of article and the complete author list of each of the 
1,294,357 references online. 
 

(744,583 unique references) 

Step 4: Computation of the Jaccard co-citation coefficient for all pairs of references (intersection over the union 
of forward citations). Highly skewed distribution with a long tale of pairs that are consistently cited in the same 
papers. 

Step 3: Generation of a database of pairs of all references (a) co-cited at least once, (b) written no more than 1 
year apart, (c) having no overlapping author, (d) in which at least 5 citations for each reference are observed in 
the dataset of citing articles. 

(17,050,914 pairs considered; 449,417 pairs selected)  

 

Step 5: Selection of the 2,320 pairs with co-citation coefficient superior to 50% and run a parsing algorithm on all 
the co-citing articles. Out of these pairs the parsing algorithm could analyze 3 co-citing publications or more in 
1,825 cases; 720 pairs have been cited adjacently in 100% of the co-citing articles 
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FIGURE 3. CITATIONS TO ACADEMIC AND INDUSTRY TWINS IN SCIENTIFIC JOURNALS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 FIGURE 4. OUR SAMPLE IN PERSPECTIVE 
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FIGURE 5. MAIN EFFECT: TWO DIFFERENT USES OF SCIENTIFIC KNOWLEDGE* 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Twins involving authors with dual academic and industry affiliations were excluded  


