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ABSTRACT 

We examine two views of the emergence of science-based technologies. In one, the academic 

environment encourages cumulative inventions through its culture of sharing and openness. In 

the other, firms offer a more fertile ground for science-based technologies because of their 

distinctive mission, larger resources and deeper connections with inventors. Analysis of 

cumulative invention based on 39 simultaneous discoveries between academia and industry 

involving 90 teams and cited in 533 patents shows that the most prolific source of science-based 

inventions are firms. Industry discoverers generate over 3 times as many cumulative patents as 

their co-discoverers in academia. Moreover, non-discoverer inventors draw scientific knowledge 

from firms at a 10-20% higher rate than they do from academia. 

 

Keywords: Corporate R&D; Academic science; Knowledge diffusion; Simultaneous 

discoveries; Patents 
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1. INTRODUCTION 

 A large and growing literature has argued that scientific research has a positive impact on 

technological innovation in both firms (Cohen and Levinthal 1990) and universities (Henderson, 

Jaffe, and Trajtenberg 1998). However much less is known of the conditions under which the 

scientific knowledge produced in firms and universities is recombined into novel technologies. 

Historical examples reveal that while this translation can be very rapid in some circumstances, 

scientific knowledge can also remain unexploited for years, even decades, before an inventor 

finally uses it—if at all1 (Rosenberg 1994; Mokyr 2002). In this paper, we try to fill this gap by 

examining the factors that lead to the translation of scientific discoveries into novel technologies, 

a process we term “technology spawning.” We examine two views of this process. 

In one view, the academic environment allows for a large diffusion of new knowledge 

and therefore fosters cumulative invention. The diffusion of knowledge from academic labs is 

not only a consequence of the educational mission of universities; it also results from the 

academic norms of sharing and openness that sharply contrast with the use of secrecy and 

exclusion of commercial science (Dasgupta and David 1994; Murray 2010). In this view, 

scientific research performed in academia should therefore be recombined into a larger number 

of technologies than if it were produced in industry (David and Dasgupta 1987; Zucker, Darby, 

and Brewer 1998; Henderson, Jaffe, and Trajtenberg 1998; Adams 2002; Owen-Smith and 

Powell 2004; Furman et al. 2005). We refer to this description of technology spawning as the 

“Entrepreneurial University view.” 

Another view of the technology spawning process argues instead that the corporate 

environment leads to higher rates of cumulative invention. Unlike academic scientists working in 

the ivory tower, industry scientists have clear incentives, better knowledge, and more resources 

to develop new technologies (Zucker, Darby, and Armstrong 2002; Aghion, Dewatripont, and 

Stein 2008). Knowledge often flows between competing firms (Saxenian 1994) and industrial 

R&D scientists primarily reuse knowledge from other firms rather than knowledge from 

academia (Cohen, Nelson, and Walsh 2002).  Since scientific and technological networks tend to 

be distinct (Murray 2002), new knowledge emerging in industry might be accessible to a larger 

number of inventors. We refer to this as the “Ivory Tower view” of technology spawning. 

                                                           
1
 For instance, the Hellenistic civilization produced Ptolemaic Astronomy but never used it for navigation, they 

understood optics but did not translate that knowledge into making binocular or glasses (Mokyr 2002, 262) 
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This paper is an empirical exploration of these two views of the technology spawning 

process. While we frame the paper as a “horse race” between the two hypotheses, our analysis 

clearly shows that both types of environments contribute to the creation of new technologies. 

Academic science emerges as an important source of science-based invention, as does industrial 

R&D. While both types of spawning emerge in practice, we hope to shed light on the respective 

impact of the academic and corporate research environments on cumulative invention. 

The empirical challenge in testing these hypotheses is straightforward.  Observed rates of 

cumulative inventions might result from the environment in which a given discovery was made 

but it might also be a consequence of the nature and promises of that discovery. For instance, 

evidence that scientific publications authored by firms receive more patent citations than 

academic papers might indicate that private firms constitute a more favorable environment for 

cumulative invention.  However, it might also reflect the fact that discoveries made in 

universities tend to be more basic than discoveries made in firms. The implications are vastly 

different depending on the mechanism. In order to compare the two views of technology 

spawning, it is crucial to account for the technological potential of the observed scientific 

discoveries. This paper reports a novel empirical strategy to tackle this question. 

 In the winter of 1999, two teams of scientists simultaneously discovered VR1 (vanilloid 

receptor-1), the receptor for the pain caused by excessive heat or capsaicin, the pungent 

component of chili peppers. The first team, led by Dr John B Davis, sent its results to Nature on 

December 20, 1999 and the paper was published on May 11, 2000. The second team, led by Prof 

David Julius, sent its results to Science on January 18, 2000 and the paper was published on 

April 14, 2000. The new knowledge had important implications for the development of pain 

therapeutics. Yet, both discoveries were made in very different environments. Julius is an 

academic based at UC San Francisco. In contrast, Davis is an industrial scientist working at 

Smithkline Beecham in Harlow, UK.  

Simultaneous discoveries are a fascinating and relatively frequent phenomenon which has 

historically received a lot of attention (Merton 1961). When the discoverers submit their findings 

for publication at almost the same time, two or more papers disclosing the same discovery can be 

accepted, thus leading to the publication of “paper-twins.” Paper-twins are scientific articles that 

disclose the same underlying piece of knowledge. They are thus more than complementary 

discoveries or discoveries belonging to the same scientific specialty. Rather, by embedding the 
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same piece of knowledge that emerged in two distinct environments, paper-twins are a natural 

consequence of the duplication of effort in science, and a potentially rich setting to study the 

determinants of cumulative invention. 

 The “experiment” afforded by the observation of simultaneous discoveries occurring in 

an academic and an industrial environment will allow for a set of precise tests motivated by the 

two competing views on technology spawning. The citations of each twin paper in the patent 

literature provide indeed a convenient (though noisy) measure of cumulative invention. First, we 

study the extent to which the discoverers in each environment will invent based on their 

scientific discovery.  Second, we explore the use of scientific knowledge from academic and 

industrial laboratories by inventors who did not take part in the discovery. Because it enables the 

observation of the non-occurrence of cumulative inventions that could have occurred, paper-

twins are a particularly suitable setting to investigate the impact of the research environment on 

cumulative invention. 

 The analysis centers on 39 simultaneous discoveries made by 90 teams and that involved 

at least one team from academia and another team from a firm. These 90 papers are cited in 533 

patents, therefore allowing for a quantitative examination of the two views on technology 

spawning. The chosen setting is narrower in scope than the massive data-based efforts analyzing 

tens of thousands of academic publications and patents (Narin, Hamilton, and Olivastro 1997; 

Henderson, Jaffe, and Trajtenberg 1998) or large-scale survey data (Klevorick et al. 1995; 

Cohen, Nelson, and Walsh 2002) but larger than qualitative small-scale investigations (Colyvas 

et al. 2002).  The analysis establishes two core findings. First, we find that discoverers working 

in industry generate more than three times the number of patents of their co-discoverers in 

academia. Second, the data indicates that non-discoverer inventors tend to draw their scientific 

knowledge from firms rather than universities. A discovery made in a firm is 10-20% more likely 

to be cited in follow-on patents than its academic twin. Taken together, these results provide 

strong support for the view that the corporate environment leads to the higher rates of cumulative 

invention.  

 

2. SCIENCE-BASED CUMULATIVE INVENTION 

 Science is broadly considered a key input into new technologies (Rosenberg 1994; Mokyr 

2002). Not only does novel scientific knowledge provide guidance in the process of invention 
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(Nelson 1982; Fleming and Sorenson 2004), it can also at times be directly instantiated as a new 

technology (Stokes 1997; Murray 2002). Yet, the creation of new scientific knowledge is not 

enough to ensure its development into novel inventions (Zucker, Darby, and Armstrong 2002; 

Murray and O’Mahony 2007). While both firms and universities produce scientific knowledge 

(Sauermann and Stephan 2010), a debate exists between those who believe that the academic 

environment is the most propitious to cumulative invention and those who believe the contrary.  

 

2.1. The Entrepreneurial University view of technology spawning 

 The idea that the academic environment fosters cumulative invention is based on the 

observation that the diffusion of knowledge is central to the work and mission of university 

scientists. The ability to claim priority for an original contribution is a fundamental determinant 

of the allocation of honor in the scientific community and honor in turn shapes individual 

careers. In such a regime, appropriation does not occur through secrecy but through openness, 

sharing and claiming. Races and disputes are therefore common, since scientists have a strong 

incentive to rush and disseminate the knowledge that they have created (Merton 1957). This 

system pushes scientists to disclose quickly and to lower as much as they can the cost for others 

to access and reuse the new knowledge that they create. While firms might have incentives to 

stall the development of technologies that could cannibalize other sources of revenue, academic 

researchers can only gain from an increase in recognition. Similarly, the transparent evaluation 

of individual scientists and of their work through peer review lowers the uncertainties for R&D 

labs interested in absorbing knowledge or hiring personnel, thus decreasing the cost of learning 

and cumulative invention (Dasgupta and David 1994). The institutional arrangement ensuring the 

preservation, certification and distribution of scientific knowledge at a low cost for the 

cumulative innovator is sophisticated and includes both informal means such as conferences and 

peer networks, as well as formal mechanisms such as peer-reviewed publications and materials 

libraries such as biomedical resource centers (Furman and Stern 2011). 

 While firms can also be involved in the production of “open science” (Stephan 1996; 

Sauermann and Stephan 2010), industrial R&D is typically associated with a very different 

institutional environment. Because firms value the commercial logic of science based on 

exclusion and secrecy, scientists can earn higher wages if they accept to not be a part to the 

community of open science (Stern 2004). In commercial science, property over a new piece of 
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scientific knowledge is not achieved through sharing, but through excluding. The incentive is not 

to make cumulative invention by others easier; it is to make it more costly. This sharp contrast is 

well illustrated by the case of Harvard’s exclusive licensing of the OncoMouse patent to DuPont 

(Murray 2010). From its discovery in 1984 to its entry into the commercial world in 1988, 

geneticists were pushed by the generous material culture and strong normative pressure to freely 

exchange the mouse. This in turn enabled a fast expansion of cumulative innovation by other 

labs. However, after it received its exclusive license in 1988, DuPont introduced a number of 

restrictions on the exchange of the mouse, increasing its cost, prohibiting informal exchanges, 

introducing annual reporting requirements, and imposing reach-through on future discoveries 

made with the OncoMouse. These decisions caused an outrage in the scientific community and 

greatly decreased the rate of cumulative innovation based on the mouse’s discovery. 

 In sum, the Entrepreneurial University view of technology spawning is based on the 

distinct institutional logics prevailing in industry and in academia. A number of researchers have 

argued in favor of this view (David and Dasgupta 1987; Zucker, Darby, and Brewer 1998; 

Henderson, Jaffe, and Trajtenberg 1998; Adams 2002; Owen-Smith and Powell 2004; Furman et 

al. 2005). In fact, it is well summarized in the following words: “since universities are in 

principle dedicated to the widespread dissemination of the results of their research, university 

spillovers are likely to be disproportionately large and may this be disproportionately important” 

(Henderson, Jaffe, and Trajtenberg 1998, 119). 

 

2.2. The Ivory Tower view of technology spawning 

 In contrast, the Ivory Tower view of technology spawning emphasizes that the academic 

environment impedes cumulative innovation. The emphasis here is not on institutional norms, it 

is instead on the community of inventors and on the circulation of ideas in that community. 

 While academic institutions have the mission to disseminate their knowledge, individual 

scientists often lack the incentive—and sometimes the resources—to develop their ideas beyond 

the stage of proof of concept of early prototype (Jensen and Thursby 2001). While non-

discoverers could potentially undertake cumulative innovation based on the new discovery, 

academic scientists are often reluctant to spend the time and resources necessary to transfer the 

tacit knowledge to outsiders (Zucker, Darby, and Armstrong 2002). They are also often 

uninformed about commercialization opportunities. In addition, the logistics of knowledge 
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transfer involves contractual agreements which can be quite costly and complicated, and 

university scientists might not have access to the appropriate supporting infrastructure (Colyvas 

et al. 2002). 

 In contrast to scientists working in academia, firm scientists have strong incentives to 

develop new technologies based on the scientific knowledge that they create (Aghion, 

Dewatripont, and Stein 2008). Moreover, even if firms try to limit knowledge diffusion toward 

other firms by using for instance non-compete agreements, the effectiveness of these types of 

measures is limited (Marx, Strumsky, and Fleming 2009) and knowledge often flows between 

competing firms (Saxenian 1994). Structurally, universities often occupy peripheral positions in 

networks of innovative organizations (Powell et al. 2005) and scientific and inventor 

collaboration networks are similarly distinct (Murray 2002). Thus, scientists working at 

industrial R&D labs tend to primarily use external knowledge that they find from other firms 

rather than from academic institutions (Cohen, Nelson, and Walsh 2002). 

 The Ivory Tower view of technology spawning is based on the classic image that 

promising scientific knowledge might be sitting unused on the shelves of university labs. This 

view was well summarized by senator Birch Bayh, author of the famous Bayh-Dole Act, when 

he famously declared: “What sense does it make to spend billions of dollars each year on 

government-supported research and then prevent new developments from benefiting the 

American people because of dumb bureaucratic red tape?” (AUTM 2004, cited in Alridge & 

Audretsch 2010). Thirty years after the Bayh Dole act, university patenting has boomed (e.g. 

Mowery, Sampat, and Ziedonis 2002) and university knowledge is being increasingly translated 

into new technologies (Sampat, Mowery, and Ziedonis 2003; N. Hausman 2010). Yet recent 

studies have shown that many difficulties remain (Grimaldi et al. 2011). 

 

 

3. EMPIRICAL APPROACH 

3.1. The Challenge 

The empirical challenge in testing the two hypotheses of technology spawning  

is straightforward. When observing the emergence of science-based invention, how can we 

gauge whether these stem from the intrinsic potential of the knowledge itself rather than from the 

characteristics of the environment of discovery? Universities are widely believed to conduct 

much more basic research than firms. As a consequence, the relevance of university research for 
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invention tends to be indirect whereas firms produce directly relevant knowledge. A large 

number of studies have described the division of labor between firms and universities (Nelson 

1986; Rosenberg and Nelson 1994; Rosenberg 1994; Klevorick et al. 1995; Mansfield 1995; 

Cohen, Nelson, and Walsh 2002). 

The fundamental empirical challenge is therefore an identification problem. The risk is to 

conflate the marginal impact of the environment of discovery with the selection effect of 

knowledge into this environment. Knowledge with high potential for cumulative invention is 

more likely to emerge in firms rather than in universities. A simple comparison between different 

types of environments (e.g. university vs. industry) might therefore lead to biased results due to 

unobserved differences in technological potential.  Ideally, the researcher would like to observe 

the potential of the new knowledge and to compare this potential to realized cumulative 

invention. 

 

3.2. Paper-Twins 

 This paper proposes a novel empirical approach exploiting the existence of simultaneous 

discoveries operationalized as paper-twins. Paper twins are the dual instantiation of the same 

piece of new scientific knowledge in two distinct environments. The following example resulted 

from a discovery simultaneously made at UCSF in California and at SmithKline Beecham in 

England: 

Caterina et al. (April 2000) “Impaired Nociception and Pain Sensation in Mice Lacking 

the Capsaicin Receptor.” Science 

“The capsaicin (vanilloid) receptor VR1 is a cation channel expressed by primary sensory 

neurons of the “pain” pathway. Heterologously expressed VR1 can be activated by vanilloid 

compounds, protons, or heat (>43°C), but whether this channel contributes to chemical or 

thermal sensitivity in vivo is not known. Here, we demonstrate that sensory neurons from 

mice lacking VR1 are severely deficient in their responses to each of these noxious stimuli. 

VR1−/− mice showed normal responses to noxious mechanical stimuli but exhibited no 

vanilloid-evoked pain behavior, were impaired in the detection of painful heat, and showed 

little thermal hypersensitivity in the setting of inflammation. Thus, VR1 is essential for 

selective modalities of pain sensation and for tissue injury–induced thermal hyperalgesia.” 

 

Davis et al. (May 2000) “Vanilloid receptor-1 is essential for inflammatory thermal 

hyperalgesia.”  Nature 

“The vanilloid receptor-1 (VR1) is a ligand-gated, non-selective cation channel expressed 

predominantly by sensory neurons. VR1 responds to noxious stimuli including capsaicin, the 

pungent component of chilli peppers, heat and extracellular acidification, and it is able to 

integrate simultaneous exposure to these stimuli (…). Here we have disrupted the mouse 
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VR1 gene using standard gene targeting techniques. (…) Although the VR1-null mice 

appeared normal in a wide range of behavioural tests, including responses to acute noxious 

thermal stimuli, their ability to develop carrageenan-induced thermal hyperalgesia was 

completely absent. We conclude that VR1 is required for inflammatory sensitization to 

noxious thermal stimuli but also that alternative mechanisms are sufficient for normal 

sensation of noxious heat.” 

 

These excerpts describe two sets of results obtained by examining the behavior of mice 

lacking a specific receptor (VR1). Both teams have found that mice in which the VR1 gene had 

been disrupted exhibit normal reactions to a variety of stimuli but become completely insensitive 

to one specific stimulus (carrageenan-induced thermal hyperalgesia). One of the team (Caterina 

et al) conducted its research within academia and the other team (Davis et al) in a firm. Both 

papers were submitted within a month (respectively January 18
th

 2000 and December 20
th

 1999). 

In short, the (nearly) simultaneous discovery of the capsaicin receptor in two different 

environments led the disclosure of the same new knowledge in two distinct papers. 

We use simultaneous discoveries as an “experiment” from which it is possible to 

compare the relative impact of the academic and corporate environments on cumulative 

invention.  Specifically, our empirical strategy exploits three key aspects of the phenomenon 

associated with the production of paper-twins: 

a. since they disclose the same discovery, the knowledge disclosed in each of the paper-

twins has intrinsically the same potential for follow-on inventions 

b. since simultaneous discoveries emerge in different environments, the knowledge from 

each discovery might not actually be turned into new inventions at the same rate 

c. citation and non-citation of each of the twin papers in the patent literature are a noisy but 

useful measure of the occurrence (or non-occurrence) of cumulative invention  

 

3.2. Cumulative invention by the discoverers 

Using simultaneous discoveries, it is possible to compare the extent to which discoverers 

engage in cumulative invention in academia and in firms. Empirically, our goal is not to estimate 

whether universities or firms get the “paired patent” (Murray 2002) on the newly discovered 

knowledge itself. Receiving the paired patent depends mostly on the exact timing of the 

discovery as well as on the patent application strategy. In contrast, the focus of this paper is on 

the long term use of the new knowledge as a springboard for invention. Since they discovered 



 
 

10 
 

the same knowledge around the same time, the academic and industrial scientists in the dataset 

have the same opportunity to turn this knowledge into cumulative inventions. As a measure of 

discoverer invention, we use the number of patents in the patent literature that (1) originate from 

a discoverer and (2) that cite one of the discovery papers.  

If the academic environment holds back cumulative invention by the discoverer, then the 

academic discovery team should receive fewer patents based on the discovery than the corporate 

co-discoverers. Since firms are known to conduct on average more applied research than 

universities, not accounting for a discovery’s technological potential would bias the results. I can 

introduce paper-twins fixed-effects in order to examine the extent to which cumulative invention 

varies across discovery teams while keeping the discovery constant.  Empirically, measuring 

cumulative invention using patent citations implies that we must account for its form as count 

data skewed to the right, calling for the use of a count model such as a fixed effect Poisson with 

quasi-maximum likelihood (i.e. “robust”) estimates (J. Hausman, Hall, and Griliches 1984). In 

addition, USPTO patenting by the discoverer is likely to depend on whether the discovery was 

made in the US as well as on the number of discoverers. Our baseline empirical test for the 

impact of the academic environment on invention by the discovery team of paper i of twin j is 

therefore: 

                                                  

where    is a paper-twin fixed effect,      is a vector of control variables including team 

size and location in the United States and        is a dummy variable equal to one if the 

principal investigator on the paper is based in academia and zero if he or she is based in industry. 

Because the dataset consists exclusively of simultaneous discoveries that involve at least one 

academic team and one industry team, we are able to identify differences in the rate of 

cumulative invention based on the same discovery in these two environments.  

 Discoverer invention is however an incomplete measure of a potential ivory tower effect. 

A number of researchers have noted that faculty patenting is only one channel through which 

cumulative invention might occur and that its relative importance is limited (Agrawal and 

Henderson 2002). It is possible that academic scientists systematically “outsource” cumulative 

invention to scientists from other organizations. Faculty patenting might therefore be a deceiving 

measure of cumulative invention since knowledge produced in universities might be turned into 

novel technologies by inventors who did not take part to the discovery. In order to get a deeper 
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understanding of the potential ivory tower effect, it is therefore crucial to analyze the extent to 

which non-discoverer inventors are able to draw on scientific knowledge stemming from firms 

and universities. 

 

3.3. Cumulative invention by non-discoverers 

One crucial advantage of using paper-twins is that it allows the observation of cumulative 

inventions that do not cite one (or more) of the papers on which they build. As detailed in part 4, 

the incentive of the inventor is to cite the entire prior art of which he or she is aware. While 

citation to one of the twin papers indicates cumulative invention, failure to cite all twin papers 

can be interpreted as incomplete knowledge of the prior art by the cumulative inventor2. For each 

cumulative patent, we can contrast these instances of “failed” knowledge flow to the actual 

observed citations, or “realized” knowledge flow. We are thus able to estimate the impact of the 

environment of discovery—academia versus industry—on the rate of follow-on citations in the 

cumulative patent literature.  

If the academic environment hinders cumulative invention by non-discoverers, the rate of 

citations to academic papers should be inferior to the rate of citations to their industry twin. 

Since unobserved characteristics of the inventor or invention (e.g. familiarity with the scientific 

literature) might be correlated with the origin of the scientific discovery, we use citing-patent 

fixed effects in order to avoid an omitted variable bias. The binary nature of the outcome 

variable could be modeled using a logistic regression with citing patent fixed effects. However, 

considering the small number of observations per citing patent, such a model would not be 

consistent. The well-known incidental parameter problem can be solved by using a conditional 

likelihood function instead of the usual maximum likelihood. We therefore carry out the 

estimation using a conditional logit model (Chamberlain 1982). As in the previous analysis, the 

realization of a citation might depend on characteristics of the environment of discovery such as 

whether the discovery was made in the US as well as on the number of discoverers. In this case, 

characteristics of the patent-paper dyad might also impact citation. These include for instance the 

number of years separating the discovery and the invention as well as the geographic distance 

separating the discoverers and the inventors. Our baseline empirical test for the impact of the 

                                                           
2
 Non-realized citations can be interpreted either as failed knowledge flow or as failed invention. Unfortunately, our 

dataset does not allow us to disentangle these two interpretations. 
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academic environment on the extent to which invention k has drawn knowledge from paper i of 

twin j is therefore: 

                                              

where     is a fixed effect for patent k citing discovery (paper twin) j,       is a vector of 

control variables including characteristics of the papers as well as characteristics about the 

patent-paper dyad and        is a dummy variable equal to one if the corresponding author of 

the paper is based in academia and zero if he or she is based in industry. Because we observed 

two sources—academia and industry—for the same knowledge, we are able to measure the 

propensity to learn from each environment independently of the technological potential of the 

knowledge produced. 

 

3.4. Nuances of the effect of the environment 

In order to gain a finer understanding of the mechanism at play in our data, we also 

explore a number of more nuanced hypotheses about cumulative invention by both the 

discoverers and non-discoverers. First, discoverer-inventors from academia are less likely to 

have the appropriate industrial and market-knowledge about the type of inventions that could be 

successful (Gittelman and Kogut 2003). We therefore expect discoverer-inventors from 

academia to produce lower impact patents than discoverer-inventors from industry. Second, we 

expect that connection to a network of inventors is a driver of cumulative invention. Thus, the 

size of the team of industry scientists and the geographic proximity between the discovery and 

the inventor ought to increase the relative impact of the industry environment on cumulative 

invention. We also expect the difference between the rate of cumulative invention based on 

academic and corporate discoveries to decrease overtime as information spreads about the 

simultaneous discovery. 

 

 

4. THE DATA 

4.1. Sample definition 

 The data for this study is based on the first automatically and systematically collected 

dataset of simultaneous discoveries. The full dataset consists in 1,246 papers disclosing 578 
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discoveries and operationalized as 720 paper twins3 published between 1970 and 2009. The 

algorithm used to build this dataset is based on the insight that two papers disclosing the same 

simultaneous discovery are systematically cited together in the follow-on literature, not only in 

the same papers, but also in the same parenthesis, or adjacently. The algorithm is summarized in 

Figure 1 and described with more details in a separate paper (Bikard 2012).  

------------------------------------------ 

Insert Figure 1 about here 

------------------------------------------- 

 Our empirical work relies on the fact that paper-twins are indeed simultaneous 

discoveries and have therefore inherently the same potential for cumulative invention. Observed 

variance in the citation rate of two twin papers in the patent literature ought therefore to be due to 

the different environments in which the research took place rather than on differences in the 

discovery itself. We check this comparability assumption in several ways4. First, we examine the 

number of months separating the publications of two twin papers. As noted above, the algorithm 

did not match articles on simultaneity beyond ensuring that the calendar years of publications 

were no more than one year apart. If two alleged paper twins were not really the same, one 

would expect them to be on average six months apart or more.  The 720 paper twins were in fact 

published on average 1.8 months apart, a lag considerably shorter than the average time between 

paper submission and publication. In fact, 373 pairs of twins were published the exact same 

month and 267 of them were published in the same issue of the same journal. We then verify the 

semantic similarity of two twin papers by using the Pubmed related citation algorithm. If the 

twins were not very closely related, they should not be using the same words and should 

therefore be ranked far from each other. Pubmed ranks two papers of the same twin right next to 

each other 42% of the time. The rank different is inferior to 10 for 90% of the twins5. Finally, the 

best test is probably to collect the opinion of the discoverers themselves. We selected randomly 

10 discoverers and asked them to describe the discovery process. 9 of them told us that it was an 

instance of simultaneous discovery without us asking. After we asked the tenth person why he 

did not mention the twin paper, he asserted angrily that he deserved all the credit and that his 

idea had been stolen. Of course, the fact that two teams have published twin papers at the same 

                                                           
3
 In the data a triplet appears as 3 paper twins, a quadruplet as 6 paper twins 

4
 This analysis was done for the entire dataset consisting of 720 paper-twins (578 simultaneous discoveries)  

5
 Rank difference calculated after dropping articles that are published more than a calendar year apart 
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time does not mean that they conducted the exact same experiment or that they interpreted their 

results in the exact same way. It also does not mean that both discoveries were independent of 

one another. In fact, interviews with discoverers uncovered a number of cases in which one team 

accused the other of idea theft. However, the fact that the community of experts ruled that credit 

ought to be shared between two teams does indicate (1) that both teams are widely believed to 

have had the capability to make the discovery and (2) that each team has provided convincing 

evidence supporting their claim to priority. 

 The core of the analysis performed here is based on a subset consisting in 90 scientific 

publications disclosing 39 simultaneous discoveries having involved at least one industry-based 

team and one team based in a public research organization. We tracked cumulative invention by 

examining the citations of each of the 90 papers in the patent literature. We used a web crawler 

that searched the title of each paper and output information about each of the patents that 

included the article’s title in its body. References in patents are important since they define the 

scope of the claimed novelty. As such, they are the responsibility of the inventor, the attorney 

and the examiner. In the US, the applicant has a strong incentive to disclose all prior art that he 

or she is aware of because failure of doing so can lead to patent invalidation, a rule known as the 

doctrine of “Inequitable Conduct.” Citations in the patent literature are an imperfect measure of 

knowledge diffusion because not all innovations are patented (Cohen, Nelson, and Walsh 2000), 

not all knowledge flows are cited or citable (Griliches 1990), citations are at time used 

strategically (Lampe 2010) and a number of them are added by the examiner (Alcácer and 

Gittelman 2006). Yet, they are a readily available, comprehensive and well understood measure 

of knowledge dissemination and are therefore widely used (Jaffe, Trajtenberg, and Henderson 

1993; Narin, Hamilton, and Olivastro 1997; Henderson, Jaffe, and Trajtenberg 1998; Gittelman 

and Kogut 2003; Sorenson and Fleming 2004). In addition, our particular setting presents two 

characteristics that ought to attenuate some of the concerns associated with this measure. First, 

we are studying life sciences, an area in which patents are widely used and strategic citations is 

limited (Lampe 2010). Second, we are studying citations to scientific papers, which tend to be 

less added by the examiner, less strategically used, and overall a better measure of knowledge 

diffusions than patent citations to other patents(Cohen, Nelson, and Walsh 2002; Roach and 

Cohen 2011).  
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As apparent in Table 1, the data is drawn from several sources. Data about each 

publication comes from ISI Web of Science and Scopus. Details about the corresponding author 

come from an analysis of the publications themselves. Patent citation data (through May 2011) 

and information about each citing patent were collected using Google Patents.  

------------------------------------------ 

Insert Table 1 about here 

------------------------------------------- 

4.2. Summary Statistics 

Table 2 and Figure 2 use the entire dataset of 1,246 papers and 578 simultaneous 

discoveries and present evidence that university science tends to be more basic—at least as 

measured by the patent citations that simultaneous discoveries receive. The two graphs on top of 

Figure 2 show the different rates of yearly patent citations for non-matched academic and 

industry publications. Clearly, the average academic paper in the dataset receives far fewer 

patent citations than the average industry publication. The two bottom graphs show the same 

results for the “matched sample” i.e. the discoveries made simultaneously by an academic and an 

industrial team. As apparent from the graph, the difference in citation rate is much smaller. Table 

2 similarly compares the unmatched and the matched samples and presents the same result. Thus, 

absent a close control for the fundamental aspect of academic research, comparisons of academic 

and industrial publications would vastly bias the results against the Entrepreneurial University 

view of technology spawning. While the analysis presented here focuses exclusively on the rate 

of cumulative invention, it is striking to also note in Table 2 that patents referring to firm papers 

are largely more cited than those referring to the academic twin, therefore providing additional 

evidence in support of the Ivory Tower view. 

------------------------------------------ 

Insert Table 2 & Figure 2 about here 

------------------------------------------- 

For the main analysis, we restrict our dataset to the “matched sample” only. Table 3 

reports summary statistics. The sample consists of 39 simultaneous discoveries disclosed in 90 

scientific publications and that have received 533 citations in the patent literature. In order to 

investigate discoverer invention, we measure # SELF PATENTS, the number of cumulative 

inventions made by the discoverers themselves. There are 91 such patents in the dataset that cite 
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18 papers—or 13 simultaneous discoveries. In contrast, the examination of non-discoverer 

invention concentrates on each potentially citing patent. The CITATION variable takes a value 

of 1 if the citation has taken place and 0 otherwise. The dataset includes 742 potential citations of 

which 442 are realized. One can also note that the 39 simultaneous discoveries were made 

between 1994 and 2008 and that 58 out of the 90 papers had their corresponding addresses in the 

US. The average number of authors per paper is 13.9 but one paper-twin about the sequencing of 

chromosomes of the plant Arabidopsis thaliana (both published in the same issue of Nature in 

1999) included a 216-authored and a 37-authored paper. 

------------------------------------------ 

Insert Table 3 about here 

------------------------------------------- 

ACADEMIA is a dummy variable equal to one for all papers whose corresponding 

author was based in a university or public research organization. In our dataset, the 39 

simultaneous discoveries took place in 41 public research institutions and 25 firms. The most 

common public research institutions in the data are Harvard University (4 papers), UT Houston 

(2 papers) and Stanford University (2 papers) and the most common firms are Genentech (6 

papers), GSK (5 papers) and Amgen (4 papers). The 533 citations that the papers have received 

in the patent literature represent 313 unique patents, 75% of them were assigned to firms and 

25% of them were assigned to academic institutions. While two twin-papers are consistently 

cited together in the scientific literature, the same is not true in the patent literature. The 

intersection of the forward citations of paper twins in the patent literature is only 21% of the 

union. 

The relationship between ACADEMIA and the two main dependent variables # SELF 

PATENTS and CITATION are plotted in Figure 3 and 4 respectively. Figure 3 shows that 

industry papers are clearly associated with a higher number of discoverer patent citations (z=1.64 

and p=0.10 in two-sample Wilcoxon Mann-Whitney test). Similarly, the fact that the share of 

realized citations is higher from industry papers is apparent in Figure 4 (z=1.87 and p=0.19 in 

McNemar chi-square test for matched pairs).   

------------------------------------------ 

Insert Figure 3 and 4 about here 

------------------------------------------- 
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5. EMPIRICAL ANALYSIS 

The empirical analysis involves two stages. Step 1 focuses on the count of patents by one of 

the discoverers and employs a fixed effect Poisson estimator with conditional maximum 

likelihood. Step 2 estimates the propensity that a patent will cite a discovery paper and uses a 

conditional logistic model. Robust standard errors are respectively clustered at the level of the 

twin and at the level of the citing patent. 

 

5.1. Cumulative invention by the discoverers 

Table 4 presents the results of the discoverer invention analysis. It includes simultaneous 

discovery fixed-effect so as to control for unobserved characteristics of each discovery. The first 

two columns use as dependent variables the count of discoverer patents and the two right-hand-

side columns present the same regressions but use as dependent variable the count of cumulative 

patents assigned to the organization of discovery (rather than the individual discoverer). The 

results are in line with the Ivory Tower view of technology spawning. They show that 

cumulative invention by the discoverers is much weaker in academia as compared to firms. In 

fact, firm discoverers produce on average over three times more patents than academic 

discoverers based on the same discovery. Interestingly, the coefficient is even stronger for the 

organization of discovery than it is for the individual discoverers. This result indicates that 

cumulative invention in firms does not necessarily involve the discoverer. The same is 

apparently less true in universities. 

------------------------------------------ 

Insert Table 4 about here 

------------------------------------------- 

 

5.2. Cumulative invention by non-discoverers 

We turn to an analysis of the propensity of non-discoverer inventors to draw upon knowledge 

produced in academia or in industry. Paper-twins can be used to observe the non-dissemination 

of knowledge since all patents citing at least one of the twins could potentially have cited all of 

them. Table 5 presents the results of the baseline conditional logistic regressions, estimating the 

realization of citations as a function of whether the discovery paper stems from the academia. 

The negative impact of the academic environment on cumulative invention by non-discoverers 
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appears modest (10-20%) but statistically significant and robust to the inclusion of a number of 

control variables, including characteristics of the paper such as number of authors, US-based, 

and characteristics of the patent-paper dyad such as time lag and geographic distance. Taken 

together, these results bring further support to the Ivory Tower view of technology spawning. 

Cumulative inventors are more likely to draw on a piece of scientific knowledge if it emerges in 

a firm as compared to a university. 

------------------------------------------ 

Insert Table 5 about here 

------------------------------------------- 

 

5.3. Nuances of the effect of the environment 

The remaining two tables provide a more granular view of the negative impact of the 

academic environment on cumulative invention by non-discoverers. Table 6 presents an analysis 

of the variation in the effect as a function of the number of authors, the time after discovery, 

whether the inventor and the discoverer were based in the same country and whether they were 

located geographically close to each other. In line with the explanation that the difference in 

cumulative invention is driven by the denser connection of firm scientists in the inventor 

community, we find that the negative impact of the academic environment increases with the 

size of the discovery team. This same negative effect also seems to be particularly salient in the 

years immediately following the discovery and to become weaker overtime. Similarly, the 

negative effect appears weak in the instance in which the discoveries and the inventions were 

made in different countries and is stronger when both happened in the same country. Finally, the 

last column of the table shows that the negative effect of the academic environment decreases the 

further one is from the place of discovery.  Predicted values from this regression are plotted in 

Figure 5. This statistically significant interaction effect is particularly telling since it indicates 

that the observed effect cannot be explained by the potential existence of a norm leading to the 

citation of firm papers rather than academic ones in patents.  

------------------------------------------ 

Insert Table 6 and Figure 5 about here 

------------------------------------------- 
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Finally, table 7 splits the sample between cumulative inventors from academia and those 

from firms. The effect of the environment of discovery might differ for both types of inventors 

since academic inventors might be more familiar with the work of other university scientists than 

firms’ researchers. On the contrary, table 6 indicates that the negative impact of the academic 

environment seems just as strong for inventors from universities and firms. We do not find 

evidence that knowledge circulates better within the “ivory tower”.  

------------------------------------------ 

Insert Table 7 about here 

------------------------------------------- 

One could be worried that our results might be driven not by the flow knowledge but instead 

by some norm or some strategic decision to cite corporate rather than academic discoveries when 

both are available. While we cannot entirely disprove this possibility, we can note that such a 

theory would not be consistent with our finding that the negative impact of the academic 

environment increases with geographic proximity (Figure 5). Similarly, the finding that the effect 

remains the same for academic inventors (Table 7) suggests that this citation patterns is not 

purely driven by the concern of getting sued. Finally, we conducted 5 interviews with inventors 

in order to inquire about their citation decision. All of them affirmed that they cited all the papers 

that they were aware of and that they regarded as most relevant. Inventors typically justified the 

non-citation of the twin by mentioning “lack of awareness,” “lack of time,” and in one case “lack 

of clarity” of the twin paper. 

 

6. DISCUSSION 

This paper uses a novel empirical strategy to test the relative impact of the academic and 

corporate environments on follow-on cumulative invention, a process that we called technology 

spawning. The Entrepreneurial University view of technology spawning observes that 

universities aim at disseminating the knowledge that they create and concludes that the academic 

environment increases the rate of cumulative invention based on a scientific discovery. The Ivory 

Tower view of technology spawning, on the other hand, points to the lack of connection between 

universities and the community of inventors.  It argues that the academic environment has a 

negative impact on cumulative invention.  
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The empirical approach presented here exploits the existence of simultaneous discoveries 

and their instantiation as paper-twins. Because simultaneous discoveries can emerge on both 

sides of the academia-industry boundary, it is possible to examine the same piece of new 

knowledge in two different institutional settings. This paper uses the first systematically and 

automatically generated dataset of simultaneous discoveries, including 578 instances. The core 

of the study focuses on 39 such discoveries that involved at least one team from academia and 

one team from industry. Analysis of the citations of the twin papers in the patent literature 

indicates that the academic environment has a negative impact on cumulative invention. 

We propose that science-based cumulative invention—or technology spawning—results 

from two distinct processes. First, cumulative invention can be undertaken by one of the 

discoverers. Second, non-discoverers might also use the new knowledge from the discovery in 

their own invention effort. We find that the academic environment has a significant negative 

impact on the rate of cumulative invention in both cases. However, the magnitude of this “ivory 

tower effect” is much stronger in the case of the discoverer’s inventions. The rate of cumulative 

invention by the discoverer is over three times higher in industry than in academia. In addition, 

non-discoverers inventors are 10-20% more likely to draw their knowledge from firms rather 

than from academic institutions.  

These findings should be interpreted carefully. First, we have not identified the 

underlying mechanism by which scientific knowledge in academia tends less to be turned into 

new inventions. We cannot disentangle whether the low rate of technology spawning from 

university science comes about through a lack of awareness of a specific discovery’s potential, 

lower rates of diffusion in the inventor community, or even through some underlying unobserved 

cost of drawing knowledge from an academic lab rather than from a firm. Second, since this 

study is based on 39 simultaneous discoveries made by 90 teams, one could potentially question 

the generalizability of our results. Simultaneous discoveries that involve both firms and 

universities might be a special case of discoveries since they involve clearly more authors and 

receive more patent citations than the simultaneous discoveries that do not involve firms (see 

Table 2). In addition, one could argue that in the case of a simultaneous discovery, the attention 

of the cumulative inventors simply shifts toward the industry twin. On the other hand, 

considering that the large majority of the discoveries in the dataset are from the life sciences—a 

field in which university-industry collaboration is particularly intense—the dataset might 
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constitute a lower boundary of the propensity of the academic environment to trap commercially 

relevant knowledge within its walls.  

The evidence that knowledge might to some extent be trapped inside universities supports 

the widespread idea that academic research might be somehow “under-exploited”—at least as 

compared to discoveries made in firms. This could also explain why firms that collaborate with 

universities tend to be more innovative (e.g. Cockburn and Henderson 1998). However, the 

implications of these findings for firms and policy-makers would depend considerably on the 

specific mechanism underlying these results. The observed differences in cumulative invention 

might originate from the cost to access technologically relevant information or from the choice 

of inventors to learn from firms rather than from universities. Ongoing qualitative work by the 

author should provide a more precise identification of the mechanism at play as well as deeper 

insights into the practical implications of this research.  

One should also note that the evidence presented here, that research remains “trapped” 

inside the ivory tower, captures only one aspect of the impact of the academic environment on 

knowledge dissemination. This paper starts when the discovery process stops, and therefore does 

not explore the antecedents of knowledge creation, including the ability to build on other 

scientists’ shoulders (Furman and Stern 2011). Without a detailed accounting of the size of other 

(positive) effects of the academic environment on knowledge dissemination, it is impossible to 

calculate the optimal innovation policy approach towards university science. 

The academic research environment can be portrayed as an ivory tower. On the one hand, 

research conducted there tends to be more basic and less directly relevant to science-based 

invention. On the other hand, even the relevant research done there is less likely to be turned into 

inventions than it would have, had it been conducted in the private sector. By focusing on 

simultaneous discoveries, it is possible for the first time to observe the non-occurrence of 

otherwise possible cumulative inventions. The list of potential drivers and obstacles to 

technology spawning is long.  Considering the growing desire to see publicly funded scientific 

research contribute to the economy through its translation into novel technologies, the use of 

simultaneous discovery as “knowledge twins” presents tremendous opportunities for future 

research.  
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TABLE 1. Variables and definitions 

Variable Definition Source 

Publication characteristics  

  PAPER-TWINk Dummy variable for each pair of paper twins 
Matching 

algorithm 

  ACADEMIAi 
Dummy variable equal to 1 if the corresponding author of article i is in 

a university or a government organization; 0 otherwise 
Paper itself 

  US AUTHORi 
Dummy variable equal to 1 if the corresponding author of article i is in 

the US; 0 otherwise 
Paper itself 

  PUBLICATION YEARi Year in which article i is published WoS 

  # AUTHORSi Count of the number of authors of article i WoS 

   

Patent characteristics  

  CITED BY PATENT 
Dummy variable equal to 1 if article i is cited by a patent issued by the 

USPTO prior to May 2011; 0 otherwise 
Google Patent 

  TOTAL PATENTSi # of patents citing article i issued before May 2011 Google Patent 

  UNIVERSITY ASSIGNEE 
Percentage of assignees that are universities or a government 

organizations 
USPTO 

  US INVENTOR 
Dummy variable equal to 1 if the corresponding author of article i is in 

the US; 0 otherwise 
USPTO 

  APPLICATION YEAR Year of patent application to USPTO USPTO 

  # CITATIONS RECEIVED 
Number of citations received by patent j in the patent literature by 

May 2011 
USPTO 

   

Citation characteristics  

  CITATIONij Dummy variable equal to 1 if article i is cited in patent j; 0 otherwise Google Patent 

  CITATION LAGij APPLICATION YEARj - PUBLICATION YEARi 

USPTO; ISI 

Web of Science 

(WoS) 

  GEOG DISTANCEij 

Distance, in miles, between the cities of the address of publication i's 

corresponding author and patent j's first inventor (Law-of-Cosines-

based calculation) 

Harvard IQSS 

patent database; 

itouchmap.com 

  SAME COUNTRYij 

Dummy variable equal to 1 if the corresponding author of article i is 

located in the same country as the first inventor of patent j; 0 

otherwise 

USPTO; WoS 

  SELF PATENTij 
Dummy variable equal to 1 if patent j was assigned to an organization 

present in publication i's address field 
USPTO; WoS 

 

TABLE 2. Means conditional on discovery environment  

  

ALL PAPERS   
TWIN ACROSS UNIVERSITY-

INDUSTRY BOUNDARY 

Univ. Paper Firm Paper   Univ. Tower  Firm Paper  

# Publications 1195 51  49 41 

      

Patent citation characteristics      

  # SELF PATENTS 0.12 1.92  0.43 1.71 

  # TOTAL PATENTS 1.61 9.96  4.80 6.90 

  AV. # OF CITES TO PATENTS 1.25 2.51  1.29 2.22 

      
Publication characteristics      

  US AUTHOR 0.61 0.64  0.61 0.65 

  # AUTHORS 7.25 12.73  14.47 13.27 

  PUBLICATION YEAR 2001.00 1999.71   2000.61 2000.24 
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TABLE 3. Means and standard deviations      

 Variable N Mean Std. Dev. Min Max 

Twin characteristics (N=39) 
     

  # PAPERS PER TWIN 39 2.31 0.52 2 4 

  % TWINS CITED IN SELF PATENTS 39 0.33 0.48 0 1 

  #  SELF CITING PATENTS PER TWIN 39 2.33 6.42 0 38 

  % TWINS CITED IN 3rd PARTY PATENTS 39 0.54 0.51 0 1 

  #  3rd PARTY PATENTS PER TWIN 39 9.64 15.80 0 57 

      

Publication characteristics (N=90)      

  ACADEMIAi 90 0.54 0.50 0 1 

  US AUTHORi 90 0.64 0.48 0 1 

  # AUTHORSi 90 13.92 24.06 2 216 

  PUBLICATION YEARi 90 2000.44 3.65 1994 2008 

 CITED BY SELF PATENT 90 0.20 0.40 0 1 

  # SELF PATENTS CITATIONS 90 1.01 3.26 0 26 

 CITED BY 3rd PARTY PATENT 90 0.44 0.50 0 1 

  # 3rd PARTY PATENTS CITATIONS 90 4.18 7.33 0 34 

      

Discoverers’ patent characteristics (N=91)      

  % ACADEMIC ASSIGNEE 91 0.21  0.40  0 1 

  % US INVENTOR 91 0.92  0.27  0 1 

  APPLICATION YEAR 91 2003.59  3.20  1996 2009 

  # CITATIONS RECEIVED 91 3.75  5.54  0 37 

      

3rd Party Patent-Paper dyad characteristics: Actual Citations (N=442)    

  CITATION TO UNIV PAPER 442 0.49 0.50 0 1 

  TIME LAG (YEARS) 442 4.25 3.05 -2 15 

  SAME COUNTRY 442 0.69 0.46 0 1 

  GEOGRAPHIC DISTANCE (MILES) 442 2127.72 1857.51 0 9297.4 

      

3rd Party Patent-Paper dyad characteristics: Non-Citations (N=300)    

  CITATION TO UNIV PAPER 300 0.65 0.48 0 1 

  TIME LAG (YEARS) 300 4.11 3.10 -2 14 

  SAME COUNTRY 300 0.54 0.50 0 1 

  GEOGRAPHIC DISTANCE (MILES) 300 2543.74 1954.87 0 9728.2 
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TABLE 4. Impact of the discovery environment on discoverer invention 

  FIXED EFFECT POISSON QML (level: simultaneous discovery) 

 DV = # PAT BY DISCOVERER  DV = # PAT BY DISCOVERY ORG 

  

Marginal impact; 

no control 

Marginal impact 

w/ controls  
Marginal impact; 

no control 

Marginal impact w/ 

controls 

      

ACADEMIA 0.267*** 0.268***  0.212*** 0.258*** 

 (0.08) (0.07)  (0.06) (0.08) 

      

Discovery team characteristics     

US AUTHOR  4.453   4.956e+07*** 

  (7.89)   (4.58e+07) 

# AUTHORS  1.013   1.182 

  (0.01)   (0.12) 

# of observations 32 32  32 32 

Paper-twin FE 13 13  13 13 

Values are incident rate rations; robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
     

 

TABLE 5. The impact of the discovery environment on cumulative invention by non-discoverers 

  CONDITIONAL LOGIT (level: citing patent)   

 Dependent Variable = CITATION (dummy); Self-cites excluded 

  

Baseline marginal 

impact; no control 

Marginal impact;  w/ 

discovery controls 

Marginal impact;  w/ 

discovery and dyad 

controls 

    
ACADEMIA 0.580*** 0.697** 0.576*** 

 (0.09) (0.11) (0.11) 

    

Discovery team characteristics    

US AUTHOR  1.666** 0.665 

  (0.43) (0.27) 

# AUTHORS  0.995* 0.998 

  (0.00) (0.00) 

    

Patent-Paper Dyad characteristics   

CITATION LAG   1.136 

   (0.39) 

SAME COUNTRY   5.328*** 

   (2.54) 

LOG (GEOG DISTANCE)   0.996 

   (0.07) 

    
# of observations 483 483 483 

Patent-twin dyads FE 206 206 206 

Values are odd ratios; Robust standard error in parenthesis are adjusted for 206 clusters (patent-twin dyads) 

*** p<0.01, ** p<0.05, * p<0.1    
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TABLE 6. Variations in environment effect on cumulative invention by non-discoverers 
  CONDITIONAL LOGIT (level: citing patent) 

 Dependent Variable = CITATION (dummy); Self-cites excluded 

  

Team size  

and academia 

effect 

Citation lag  

and academia 

effect 

Same country and 

academia effect 

Geographic 

distance and 

academia 

effect 

     

ACADEMIA 0.862 0.467*** 0.722 0.103** 

 (0.39) (0.14) (0.21) (0.10) 

     

Discovery team characteristics    

US AUTHOR 0.737 0.674 0.722 0.696 

 (0.31) (0.27) (0.29) (0.28) 

# AUTHORS 1.025 0.998 0.997 0.997 

 (0.03) (0.00) (0.00) (0.00) 

     

Patent-Paper Dyad characteristics    

CITATION LAG 1.125 1.072 1.167 1.061 

 (0.38) (0.37) (0.40) (0.37) 

SAME COUNTRY 5.008*** 5.295*** 5.989*** 4.570*** 

 (2.41) (2.47) (2.87) (2.21) 

LOG (GEOG DISTANCE) 0.995 0.997 0.994 0.823 

 (0.07) (0.07) (0.07) (0.12) 

     

Interactions     

  ACADEMIA*# AUTHORS 0.976    

 (0.02)    

  ACADEMIA*CITATION LAG 1.049   

  (0.05)   

  ACADEMIA*SAME COUNTRY  0.665  

   (0.27)  

  ACADEMIA*LOG (GEOG DISTANCE)   1.270* 

    (0.17) 

     

# of observations 483 483 483 483 

Values are odd ratios; Robust standard error in parenthesis are adjusted for 1244 clusters (patent-twin dyads)  

*** p<0.01, ** p<0.05, * p<0.1     
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TABLE 7. Environment effect on academic vs. corporate non-discoverer inventors 
  CONDITIONAL LOGIT (level: citing patent)   

 Dependent Variable = CITATION (dummy); Self-cites excluded 

  

Academia Effect:  

academic patents only 

Academia Effect:  

corporate patents only 

     

ACADEMIA 0.556* 0.587 0.664** 0.526*** 

 (0.18) (0.21) (0.13) (0.13) 

     

Discovery team characteristics    

US AUTHOR 2.152 0.707 1.860* 0.993 

 (1.03) (0.62) (0.62) (0.53) 

# AUTHORS 1.002 0.998 0.992** 0.998 

 (0.01) (0.01) (0.00) (0.00) 

     

Patent-Paper Dyad characteristics    

LOG (DISTANCE)  0.113**  1.704 

  (0.12)  (0.72) 

SAME COUNTRY  2.571  3.935** 

  (2.75)  (2.52) 

CITATION LAG  0.877  0.948 

  (0.20)  (0.08) 

     

# of observations 117 117 332 332 

Patent-twin dyads FE 54 54 137 137 

Values are odd ratios; Robust standard error in parenthesis are adjusted for patent-level clusters  

*** p<0.01, ** p<0.05, * p<0.1    
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FIGURE 1.An automated and systematic method to generate a list of simultaneous discoveries 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Collection of ISI Web of Knowledge data on all research articles from the 15 

non-review scientific publications having the highest Journal Impact Factor 

(42,106 publications) 

Step 2: Using Pubmed and CrossRef, verify the type of article and the complete 

author list of each of the 1,294,357 references online. 

(744,583 unique references) 

Step 4: Computation of the Jaccard co-citation coefficient for all pairs of references 

(intersection over the union of forward citations). Highly skewed distribution with a 

long tale of pairs that are consistently cited in the same papers. 

Step 3: Generation of a database of pairs of all references (a) co-cited at least once, 

(b) written no more than 1 year apart, (c) having no overlapping author, (d) in which 

at least 5 citations for each reference are observed in the dataset of citing articles. 

(17,050,914 pairs considered; 449,417 pairs selected)  

(3,989,880 pairs) 

Step 5: Selection of the 2,320 pairs with co-citation coefficient superior to 50% and 

run a parsing algorithm on all the co-citing articles. Out of these pairs the parsing 

algorithm could analyze 3 co-citing publications or more in 1,825 cases; 720 pairs 

have been cited adjacently in 100% of the co-citing articles 
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FIGURE 2. Citation rates in patents: academic vs. industry papers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. Descriptive statistics:  Discoverer invention in firms and universities 
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FIGURE 4. Descriptive statistics: Drawing on firm vs. academic knowledge 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. Impact of geographic proximity on the rate of paper citation (Predicted Values) 

 

 

 

 

 

 

 

 


